In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Residual Strength of High-Performance Concrete Subjected to High Temperatures
Author(s): N. Gowripalan, P. Salonga and C. Dolden
Publication: Special Publication
Volume: 172
Issue:
Appears on pages(s): 171-192
Keywords: Compressive strength; high-performance concretes; high-strength concretes; temperature; ultrasonic tests
Date: 12/1/1999
Abstract:High Strength Concrete (HSC) is a subgroup of High Performance Concrete. HSC can be defined as a concrete with a 28-day compressive strength of 50 MPa or more. Concrete structures are designed for fire resistance as given by different fire ratings. It is important to know the residual strength characteristics of a structural material as this will assess the condition of the structure after an accidental fire, continuous high temperature usage and for repairs. In this paper, the residual strength of a HSC mixture containing silica fume is reported. The mixture used in this investigation was a 80 MPa concrete (nominal 28-day compressive strength) and contained 10% silica fume by weight of cementitious material. At the age of 28 days, cylinders were tested for compressive strength and some were placed in a furnace and the heating was applied at a rate of about7 C per minute until the desired temperature was reached. A maximum temperature of 250 oC, 500 OC, 750C or 1000 C was maintained for a period of 3 or 24 hours. The specimens were then allowed to cool to room temperature and tested for compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity. For concrete specimens, heated to 250 OC, a residual compressive strength of 90% was obtained. The drop in the residual strength above 500 C was substantial up to 50%. As the temperature reached 1000 C only about 15% was retained. With the mixture investigated no explosive failure was noticed. It appears that a careful mixture design may eliminate any possible explosive failure. The high temperature effects are more pronounced in tensile strength, modulus of elasticity and ultrasonic pulse velocity. A progressive reduction up to 1000 OC was noticeable in the above parameters. Ultrasonic pulse velocity seems to be useful in assessing the damage of concrete due to high temperatures.
Click here to become an online Journal subscriber