• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Application of Frictional Bond-Slip Model to Large-Scale FRP-Strengthened T-Beams with U-wraps

Author(s): Jaeha Lee and Maria Lopez

Publication: IJCSM

Volume: 14


Appears on pages(s):

Keywords: FRP U-wrap, beam test, FRP debonding, anchor effect, frictional behavior

DOI: 10.1186/s40069-019-0376-6

Date: 1/31/2020

Studies on U-wraps generally focus on the experimental results and mechanisms of the shear strengthening effect. Only a few studies have focused on the anchoring effect of the longitudinal FRP due to addition of the U-wrap. Lee and Lopez (Constr Build Mater 194:226–237, 2016) have found experimentally from pull-out tests that incremental changes occur in the debonding strain at the concrete-FRP interface depending on the various type of U-wraps. The proposed numerical method using the Frictional Bond-Slip (FBS) model has been validated by comparing the pull-out test results (Lee and Lopez Constr Build Mater 194:226–237, 2016). In the present study, the FBS model was applied to characterize the behavior of a large scale FRP strengthened T-beam with multiple U-wraps. First, the 2-dimen-sional (2D) model for pull-out test was developed. Debonding load and behavior of the model were compared with both the experimental results (Lee and Lopez Constr Build Mater 194:226–237, 2016) and the simulation results of a 3-dimensional (3D) model from a previous study (Lee and Lopez Constr Build Mater 194:226–237, 2016). Next, the 2D model was applied to model the behavior of a large scale FRP strengthened T-beam with multiple U-wraps. The conducted 2D simulation using the proposed FBS model predicted well the strains at various locations on the FRP sheet, the flexural capacity and complex failure mode of the FRP strengthened beam with several U-wraps. The pro-posed FBS model was also applied to other comparable studies, and debonding strains were successfully predicted within an margin of error of 7%. Using the validated model, a parametric study of the FRP strengthened T-beam was conducted with various key parameters of the U-wrap, such as the angle of U-wrap and the number of U-wrap.