Behavior Of Shrinkage Compensating Concrete In An Unrestrained And Restrained Environment

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Behavior Of Shrinkage Compensating Concrete In An Unrestrained And Restrained Environment

Author(s): Chris Ramseyer, Kyle Renevier, and Seth Roswurm

Publication: Special Publication

Volume: 307

Issue:

Appears on pages(s): 1-20

Keywords: shrinkage compensating concrete, water tank, concrete wall, restraint, slab-on-grade, vibrating wire strain gages

Date: 3/1/2016

Abstract:
Type K Shrinkage Compensating Concrete (SCC) concrete is uniquely suited for use in slabs and walls because it typically requires fewer expansion joints than a convention portland cement (PC) concrete. This allows for continuous placement of much larger slabs and walls and facilitates the construction of high performance smooth slabs with few interruptions. Typically shrinkage-compensating concrete construction practice is to pour adjoining wall sections a minimum of five days apart in order to allow for the initial expansion of the material. The need for unrestrained expansion is implied in the ACI 223R-10 Design Guide in Chapter 5 in a discussion on sequencing the placement of wall segments. This paper discusses testing that was performed at two different locations, spanning both two different times of year and two unique climates. The tests used vibrating wire strain gages (VWSG) to investigate the restrained behavior of a wall segment in a six million gallon clear well tank in Springfield, IL, as well as the unrestrained behavior of two slabs-on-grade in Los Angeles, CA. Measurements were taken for a minimum of 30 days and a maximum of 170 days. Testing results are then compared to similar scenarios using ordinary PC concrete.