In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Effect of Severe Environmental and Loading Conditions on GFRP-RC Bridge Deck Slabs
Author(s): Amr El-Ragaby and Ehab F. El-Salakawy
Publication: Special Publication
Volume: 275
Issue:
Appears on pages(s): 1-20
Keywords: Bridge deck slab, cold temperature, fatigue, freeze-thaw, GFRP
Date: 3/1/2011
Abstract:The bridge deck slab is a prime example where FRP bars are used as main concrete reinforcement. In Canada, bridge deck slabs are usually subjected to a variation of cold and hot weathering while directly sustain the traffic loads. Both fatigue and thermal loading are expected to adversely affect the overall performance of such structural elements. In this research, a total of 4 large-scale bridge deck slabs totally reinforced with glass FRP bars were constructed and tested under simulated long-term loading and environmental conditions. The slabs were subjected to 3,000,000 cycles of sinusoidal waveform fatigue loading combined with either 100 freeze-thaw cycles or continuous cold temperature for one month. The test parameters included the environmental conditioning and the reinforcement ratio. It was concluded that the overall behavior of GFRP-reinforced bridge deck slabs after being subjected to simulated long-term fatigue load cycles and freeze-thaw or cold temperature is satisfactory according to the current design codes.
Click here to become an online Journal subscriber