On Peridynamic Computational Simulation of Concrete Structures

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: On Peridynamic Computational Simulation of Concrete Structures

Author(s): W.H. Gerstle, N. Sau, and N. Sakhavand

Publication: Special Publication

Volume: 265

Issue:

Appears on pages(s): 245-264

Keywords: fracture; peridynamic; simulation; structure.

Date: 10/1/2009

Abstract:
Computational simulation of reinforced concrete structures is challenging because concrete cracks at an early stage. Also, as a composite material with steel reinforcement, it is unclear whether the reinforcement should be modeled explicitly or whether the steel-concrete composite should be considered as a single, homogeneous, material. Adding to the difficulty is the fact that concrete is a quasi-brittle material, with a gradually softening cohesive process zone. Over the past 40 years, many finite element approaches have been employed to model reinforced concretestructures. The three main approaches are the smeared crack approach (or continuum damage mechanics), the discrete crack approach (including linear elastic fracture mechanics and cohesive crack models), and the discrete element approach (including lattice and particle models). These three approaches have achieved varying degrees of success. In 1998, Silling published a report describing the peridynamic model. This model requires no assumption regarding continuity of deformation. Using the peridynamic model, both continuous deformation behavior and fracture behavior can emerge. This paper, for the first time in an American Concrete Institute publication, presents an overview of the peridynamic literature and describes and discusses the application of peridynamics to reinforced concrete structures.