Trends in Concrete Technology for Offshore and Marine Structures


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Trends in Concrete Technology for Offshore and Marine Structures

Author(s): G. C. Hoff

Publication: Special Publication

Volume: 144


Appears on pages(s): 289-306

Keywords: columns (supports); constructability; curing; ductility; harbor structures; heat of hydration; high-strength concretes; mechanical couplers; mix proportioning; offshore structures; reinforcing steels; splicing tests; thermal gradients; General

Date: 3/1/1994

The trend in offshore and marine concrete is to use higher strength concretes (HSC) than have been used in the past. These concretes provide both additional strength and improved durability due to their improved microstructure. This is achieved by using greater cement content, supplementary cementing materials, and a low water-cementitious material ratio. HSC is more brittle than normal strength concrete and requires additional confining reinforcement to insure ductile behavior of the structural members. Higher strength steels and special methods of confinement, such as the use of T-headed bars, can contribute to the ductility of the concrete. The use of HSC creates some constructability problems such as high concrete temperatures due to a large amount of cement present and significant thermal gradients. Reinforcing bar congestion in HSC requires concrete with smaller coarse aggregate sizes and very high slumps to satisfactorily place the concrete. Lap splicing in HSC can produce problems of concrete splitting unless the splices are properly confined. The use of mechanical couplers for splicing has some advantages in HSC. Proper curing with HSC is essential.