• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Shear Capacity of Reinforced High-Strength Concrete Beams

Author(s): Erik Thorenfeldt and Geir Drangsholt

Publication: Symposium Paper

Volume: 121


Appears on pages(s): 129-154

Keywords: beams (supports); columns (supports); compressive strength; confined concrete; creep properties; deformation; ductility; high-strength concretes; lightweight concretes; reinforced concrete; reinforcing steels; shear strength; stress-strain relationships;

Date: 11/1/1990

A series of 28 reinforced concrete beams without shear reinforcement have been tested in shear by two-point loading. The main test parameters were: longitudinal reinforcement ratio (1.8 and 3.2 percent); shear span ratio (2.3, 3.0, and 4.0); size (b/h = 150/250 and b/h = 300/500 mm); and concrete type (normal density concrete of cylinder strength 54, 78, and 98 MPa and lightweight aggregate concrete, 58 MPa). The results are compared with other test results and concrete codes. For members made of normal density concrete of compressive cylinder strength exceeding 80 MPa, the diagonal cracking strength remained constant or showed a minor decrease in spite of the increasing tensile splitting strength of the concrete. A more significant decrease in ultimate shear strength was observed. A probable explanation is the increasing brittleness of the material with increasing strength. The new Norwegian Concrete Code, which includes provisions for high-strength concrete, predicts the influence of concrete compressive strength and aggregate types on the diagonal cracking shear strength fairly well. The influence of dimensional scale was, however, larger than expected. The shear strength formula in CEB-FIP Model Code generally overestimates the diagonal cracking strength of high-strength concrete slabs or beams with moderate longitudinal reinforcement ratios. An improved shear strength prediction formula for high-strength concrete has been adopted by the Norwegian Code. The lightweight aggregate concrete beams had relatively low diagonal cracking strength, as expected, but high ultimate shear strength. The tests confirm the results (except for one test series) found by Ahmad et al.


Please enter this 5 digit unlock code on the web page.