Retrofit for Blast-Resistant RC Slabs with Composite Materials


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Retrofit for Blast-Resistant RC Slabs with Composite Materials

Author(s): B. Lu, P. Silva, A. Nanni, and J. Baird

Publication: Special Publication

Volume: 230


Appears on pages(s): 1345-1360

Keywords: blast-resistant; displacement-based method; ductility;fiber reinforced polymers; steel-reinforced polymers

Date: 10/1/2005

This research program was initiated to examine the feasibility of assessingthe blast-resistant capacity of reinforced concrete (RC) slabs using the displacementbased design (DBD) method. In order to achieve this objective, five RC slabs weretested under real blast loads in the out-of-plane direction. One of the slabs was usedas the control unit to establish a baseline for comparison in terms of performance forthe other four slabs, which were strengthened with fiber reinforced polymer (FRP) andsteel fiber reinforced polymer (SRP). The explosive charge weight and stand-offdistance required to impose a given damage level were predicted by the DBD method.Test results showed that the blast loads were effectively estimated and the damagelevels observed from the field tests correlated well with the predicted levels. Inaddition, test results corroborated that the blast-resistant capacity of RC slabs can beeffectively increased by strengthening using FRP composites. The main conclusion thatcan be drawn from these tests using improvised explosive devices (IDE) is that RC slabsretrofitted on both sides have a higher blast resistance capacity than those slabsretrofitted only on one side. This paper discusses these experimental results alongwith the analysis steps used to predict the blast charge and standoff distance toimpose a given damage level.