In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Chat with Us Online Now
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Behavior of Geopolymer Concrete Columns under Equal Load Eccentricities
Author(s): D.M.J. Sumajouw, D. Hardjito, S. Wallah, and B.V. Rangan
Publication: Special Publication
Volume: 228
Issue:
Appears on pages(s): 577-594
Keywords: column; concrete; deflection; eccentricity; geopolymer;reinforcement; strength
Date: 6/1/2005
Abstract:In geopolymer concrete, a by-product material rich in silicon and aluminium (low calcium fly ash) is chemically activated by a high alkaline solution to form a paste that binds the loose coarse and fine aggregates, as well as other un-reacted materials in the mixture. This paper presents the results of an experimental study on the behaviour and the strength of twelve geopolymer concrete slender columns under equal load eccentricities. The primary variables of the test series were concrete compressive strength, longitudinal reinforcement ratio, and load eccentricity. The test results gathered included the deflection and the load capacity of the columns. The test failure loads were compared with the values calculated by the methods currently available for Ordinary Portland Cement (OPC) concrete. Excellent correlation between experimental and analytical results is found.
Click here to become an online Journal subscriber