ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 408 Abstracts search results

Document: 

22-286

Date: 

April 1, 2024

Author(s):

K. Sriram Kompella, Andrea Marcucci, Francesco Lo Monte, Marinella Levi, and Liberato Ferrara

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

The early-age material parameters of three-dimensional (3-D)-printable concrete defined under the umbrella of printability, namely, pumpability, extrudability, buildability, and the “printability window/open time,” are subjective measures. The need to correlate and successively substitute these subjective measures with objective and accepted material properties, such as tensile strength, shear strength, and compressive strength, is paramount. This study validates new testing methodologies to quantify the tensile and shear strengths of printable fiber-reinforced concretes still in their fresh state. A tailored mixture with high sulfoaluminate cement and nonstructural basalt fibers has been assumed as a reference. The relation between the previously mentioned parameters and rheological parameters, such as yield strength obtained through International Center for Aggregates Research (ICAR) rheometer tests, is also explored. Furthermore, in an attempt to pave the way and contribute toward a better understanding of the mechanical properties of 3-D-printed concrete, to be further transferred into design procedures, a comparative study analyzing the work of fracture per unit crack width in three-point bending has been performed on printed and companion nominally identical monolithically cast specimens, investigating the effects of printing directions, position in the printed circuit, and specimen slenderness (length to depth) ratio.

DOI:

10.14359/51740302


Document: 

23-276

Date: 

March 15, 2024

Author(s):

Ashley S. Carey, Grayson B. Sisung, Isaac L. Howard, Brad Songer, Dylan A. Scott, and Jay Shannon

Publication:

Materials Journal

Abstract:

Determining in-place properties of mass concrete placements is elusive, and currently, there are minimal to no test methods available that are both predictive and a direct measurement of mechanical properties. This paper presents a three-stage testing framework that utilizes common laboratory equipment and laboratory scale specimens to quantify the thermal and mechanical properties of mass high-strength concrete placements. To evaluate this framework, four mass placement of varying sizes and insulations were cast where temperature histories were measured at several locations within each placement where maximum temperatures of 107 to 119°C were recorded. The laboratory curing protocols were then developed using this mass placement temperature data and the three-stage testing framework to cure laboratory specimens to represent each mass placement. Laboratory curing protocols developed for center and intermediate regions of the mass placements reasonably replicated thermal histories of the mass placements, while the first stage of the three-stage framework reasonably replicated temperatures near the edge of the mass placements. Additionally, there were statistically significant relationships detected between calibration variables used to develop laboratory curing protocols and measured compressive strength. Overall, the proposed three-stage testing framework is a measurable step towards creating a predictive laboratory curing protocol by accounting for the mixture characteristics of thermo-mechanical properties of high-strength concretes.

DOI:

10.14359/51740705


Document: 

22-380

Date: 

March 15, 2024

Author(s):

Changhui Jin, Ningshan Jiang, Hui Li, Chengkui Liu, Aoxiang Cao Jianing Wang , Xiaochu Wen

Publication:

Materials Journal

Abstract:

The use of construction waste to prepare recycled micro powder can improve the utilization of construction waste resources and effectively reduce carbon emissions. In this paper, researchers used waste concrete processing micro powder to prepare foam concrete and quantitatively characterized the performance and pore structure of foam concrete by SEM, PCAS, and mechanical property testing methods with different mixing ratios of micro powder, the results showed that: The effect of single mixing of micro powder or fly ash is better than the composite mixing test, and the optimal proportion of compressive strength of single mixing of micro powder is higher than that of single mixing of fly ash. The optimum mixing ratio is 6:4 between cement and micro powder, and the best effect is achieved when the micro powder mixing amount is 40%. Single or double mixing can fill the pores between the foam and strengthen the performance of the substrate. The test of single-mixed or compound-mixed micro powder showed that the fractal dimension decreased with the increase of porosity; the fractal dimension of the specimen increased, the average shape factor became smaller, the compressive strength decreased, and the water absorption rate increased.

DOI:

10.14359/51740703


Document: 

23-055

Date: 

February 8, 2024

Author(s):

Sangyoung Han, Thanachart Subgranon, Hung-Wen Chung, Kukjoo Kim, Mang Tia

Publication:

Materials Journal

Abstract:

A compressive laboratory testing program, field testing program, numerical analysis, and life-cycle cost analysis were conducted to evaluate the beneficial effects of incorporating shrinkage-reducing admixture (SRA), polymeric microfibers (PMF), and optimized aggregate gradation (OAG) into an internally cured concrete (ICC) mix for rigid pavement application. Results from the laboratory program indicate that all ICC mixes outperformed the standard concrete (SC) mix. All ICC mixes showed a decrease in drying shrinkage compared to the SC mix. Based on the laboratory program, three ICC mixes and one of the SC mixes were selected for the full-scale test subjected to a heavy vehicle simulator for accelerated fatigue testing. Extensive testing and analysis have shown that ICC mixes incorporating SRA, PMF, and OAG can be beneficially used in pavement applications to achieve increased pavement life.

DOI:

10.14359/51740564


Document: 

23-093

Date: 

February 8, 2024

Author(s):

Liang Li

Publication:

Materials Journal

Abstract:

Time-zero is of considerable significance for determining both deformational and mechanical properties of high-performance concrete from very early ages. In this paper, four methods for determining the time-zero are investigated comparably, including stress evolution measurement, autogenous strain method, ultrasonic testing, and temperature rate method. A critical review of the theoretical basis behind each method is presented, with emphasis on the applicability and limitations of each method. Based on a case study, the practical capabilities of all four methods for determining the time-zero of high-performance concrete with w/b of 0.25 are experimentally assessed. It is found that the ultrasonic testing and the temperature rate method are noted to be better suited due to their simplicity and availability compared to the other two methods. Besides, the temperature of cement-based composites at very early ages can affect the determined values of time-zero, which needs further research.

DOI:

10.14359/51740565


12345...>>

Results Per Page