ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 726 Abstracts search results

Document: 

SP-340-06

Date: 

April 1, 2020

Author(s):

Maria Kaszynska and Adam Zielinski

Publication:

Symposium Papers

Volume:

340

Abstract:

The research paper presents an analysis of autogenous shrinkage development in self-consolidating concrete (SCC). The first stage of the study involved an evaluation of concrete susceptibility to cracking caused by shrinkage of SCC with natural and lightweight aggregate. The shrinkage was tested on concrete rings according to ASTM C 1581/C 1581M- 09a. The influence of aggregate composition, the water content in lightweight aggregate, and SRA admixture on the reduction of concrete susceptibility to cracking, due to the early-age shrinkage deformation was determined. In the second stage of the research, the innovative method measurement of autogenous shrinkage was developed and implemented. The tests were performed on concrete block samples, dimensions 35x150x1150 mm, that had the same concrete volume as ring specimen in the ASTM method. Linear deformation of the concrete samples was measured in constant periods of 500 s using dial gauges with digital data loggers. The investigation allowed evaluating of the influence of water/cement (w/c) ratio of 0.28, 0.34, 0.42, and of aggregate composition on the development of autogenous shrinkage in different stages of curing SCC. The results were compared to existing material models proposed by other researchers. The conducted study indicated a significant influence of the w/c ratio and composition of aggregate on the concrete susceptibility to crack caused by the autogenous shrinkage deformation.


Document: 

SP-340-05

Date: 

April 1, 2020

Author(s):

Nakin Suksawang and Hani Nassif

Publication:

Symposium Papers

Volume:

340

Abstract:

For many decades, latex-modified concrete (LMC) overlays have been successfully used in the United States, inclusive of providing protection for many bridge decks and their steel reinforcements. LMC remains one of the most desirable rehabilitation materials for concrete bridge decks because it is easier to place and requires minimal curing. Nevertheless, as is the case with any cement-based material, LMC overlays are susceptible to plastic shrinkage and delamination. These problems are often solved by proper curing and better surface preparation. Yet, despite these solutions, many questions have been raised regarding the best practices for placing LMC overlays and the proper curing and placement conditions. The current curing practice for LMC in most states simply follows the latex manufacturer’s recommendation because very little information on the proper curing methods is available. There is a need to establish detailed technical specifications regarding curing and placement conditions that will provide more durable LMC overlays. This paper provides an in-depth laboratory-based experimental study of the effect of curing methods and duration on the mechanical properties and durability aspects of LMC. Four different curing methods were examined: (1) dry curing, (2) 3 days of moist curing, (3) 7 days of moist curing, and (4) compound curing. Based on the results from the laboratory tests, technical specifications were developed for field implementation of LMC. Various types of sensors were installed to monitor the behavior of the LMC overlays on bridge deck. Results show that extending the moist-curing duration to a minimum of 3 days (and a maximum of 7 days) significantly improves both the mechanical properties and durability of LMC.


Document: 

SP-338_02

Date: 

March 1, 2020

Author(s):

Kenneth C. Hover

Publication:

Symposium Papers

Volume:

338

Abstract:

PCA researchers interested in the problem of evaporation of bleed water from concrete surfaces borrowed an equation developed by hydrologists to predict evaporation from Lake Hefner in Oklahoma. PCA’s graphical representation of that equation, subsequently modified to its present form by NRMCA, was later incorporated into multiple ACI documents, and is known by concrete technologists world-wide as the “Evaporation Rate Nomograph.” The most appropriate use of this formulation in concrete construction is to estimate the evaporative potential of atmospheric conditions (known as “evaporativity”). Since the difference between actual and estimated evaporation rate can be in the range of ± 40% of the estimate, best use of the equation as routinely applied is as a semi-quantitative guide to estimate risk of early drying and inform decisions about timing and conduct of concrete placing and finishing operations. Use of the “Nomograph” and related “Apps” in specifications is more problematic, however, given: 1.) the inherent uncertainty in its underlying equation, 2.) the difficulty in obtaining input data that appropriately characterize jobsite microclimate, and 3.) establishing a mixture-specific criterion for tolerable evaporation rate.


Document: 

SP-336_05

Date: 

December 11, 2019

Author(s):

Lisa E. Burris, Prasanth Alapati, Kimberly E. Kurtis, Amir Hajibabaee, M. Tyler Ley

Publication:

Symposium Papers

Volume:

336

Abstract:

Cement production is one of the largest contributors to CO2 emissions in the U.S. One method of reducing emissions associated with concrete is through usage of alternative cements (ACMs). Some of the more common ACMs include calcium sulfoaluminate cement, calcium aluminate cement, ternary calcium aluminate-calcium sulfate-portland cements, and chemicallyactivated binders, all of which have been shown to have lower carbon footprints than ordinary portland cement (OPC). However, the durability, and more specifically, the shrinkage behavior, of these cements has not been adequately examined, and must be better understood and able to be controlled before ACM concrete can be effectively used in the field. As a first step in increase understanding of shrinkage in ACMs, this paper examines chemical, autogenous, and drying shrinkage in the ACMs listed above. Results show that, despite greater quantities of chemical shrinkage, CSA, CAC, and chemically activated fly ash binder undergo less autogenous and drying shrinkage than OPC.


Document: 

SP-334-08

Date: 

September 30, 2019

Author(s):

Yasser Khodair, Arif Iqbal, and Mohammed Hussaini

Publication:

Symposium Papers

Volume:

334

Abstract:

This study discusses the results of an experimental program conducted to study the fresh, hardened and unrestrained shrinkage characteristics of self-consolidating concrete (SCC) using fine recycled asphalt pavement (FRAP) and high volume of supplementary cementitious materials (SCMs) including class C fly-ash (FA) and slag (S). Sixteen mixtures were prepared with different percentages of FA, S, and FRAP. SCC mixtures were divided into four groups where each group had a different percentage of FRAP replacing fine aggregate (10%, 20%, 30%, 40%) and Portland cement being replaced by different percentages of SCMs. The water to cementitious material (w/cm) ratio of 0.4 was used for SCC mixtures with a target slump flow higher than 500 mm. The flowability, deformability, filling capacity and resistance to segregation were measured to determine the fresh properties of the mixtures. Moreover, the compressive strength at 14, 28, and 90 days and split tensile strength at 28 days were determined and durability characteristics including unrestrained shrinkage up to 90 days were tested. Analysis of experimental data showed that most of the mixtures satisfied the SCC fresh properties requirements. The addition of FRAP had an adverse effect on the compressive, tensile strength and unrestrained free shrinkage of SCC mixtures.


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.