ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 2150 Abstracts search results

Document: 

SP349

Date: 

April 28, 2021

Publication:

Symposium Papers

Volume:

349

Abstract:

Sponsors: American Concrete Institute, RILEM, Université de Sherbrooke, CRIB, Université Toulouse III, Lmdc Toulouse, Kruger Biomaterials, Euclid Chemical, Prodexim International inc., BASF Master Builders, ACAA Editor: Arezki Tagnit-Hamou In July 1983, the Canada Centre for Mineral and Energy Technology (CANMET) of Natural Resources Canada, in association with the American Concrete Institute (ACI) and the U.S. Army Corps of Engineers, sponsored a five-day international conference at Montebello, Quebec, Canada, on the use of fly ash, silica fume, slag and other mineral by-products in concrete. The conference brought together representatives from industry, academia, and government agencies to present the latest information on these materials and to explore new areas of needed research. Since then, eight other such conferences have taken place around the world (Madrid, Trondheim, Istanbul, Milwaukee, Bangkok, Madras, Las Vegas, and Warsaw). The 2007 Warsaw conference was the last in this series. In 2017, due to renewed interest in alternative and sustainable binders and supplementary cementitious materials, a new series was launched by Sherbrooke University (UdeS); ACI; and the International Union of Laboratories and Experts in Construction materials, Systems, and Structures (RILEM). They, in association with a number of other organizations in Canada, the United States, and the Caribbean, sponsored the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2017). The conference was held in Montréal, QB, Canada, from October 2 to 4, 2017. The conference proceedings, containing 50 refereed papers from more than 33 countries, were published as ACI SP-320. In 2021, UdeS, ACI, and RILEM, in association with Université de Toulouse and a number of other organizations in Canada, the United States, and Europe, sponsored the 11th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2021). The conference was held online from June 7 to 10, 2021. The conference proceedings, containing 53 peer reviewed papers from more than 14 countries, were published as ACI SP-349. The purpose of this international conference was to present the latest scientific and technical information in the field of supplementary cementitious materials and novel binders for use in concrete. The new aspect of this conference was to highlight advances in the field of alternative and sustainable binders and supplementary cementitious materials, which are receiving increasing attention from the research community. To all those whose submissions could not be included in the conference proceedings, the Institute and the Conference Organizing Committee extend their appreciation for their interest and hard work. Thanks are extended to the members of the international scientific committee to review the papers. Without their dedicated effort, the proceedings could not have been published for distribution at the conference. The cooperation of the authors in accepting reviewers’ suggestions and revising their manuscripts accordingly is greatly appreciated. The assistance of Chantal Brien at the Université de Sherbrooke is gratefully acknowledged for the administrative work associated with the conference and for processing the manuscripts, both for the ACI proceedings and the supplementary volume. Arezki Tagnit Hamou, Editor Chairman, eleventh ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM2021). Sherbrooke, Canada 2021


Document: 

SP-349_17

Date: 

April 22, 2021

Author(s):

Hugo Valido Deda, Leandro Francisco Moretti Sanchez, Mayra Tagliaferri de Grazia

Publication:

Symposium Papers

Volume:

349

Abstract:

Although the 28-day concrete compressive strength is often used as a quality control indicator, early-age mechanical properties are becoming more critical to optimize construction scheduling. Numerous advanced techniques have been proposed in this regard and among those, electrical resistivity (ER), a non-destructive and inexpensive technique able to characterize the microstructure development of cementitious materials has been showing promising results. Yet, recent literature data have evidenced that ER might be significantly influenced by a variety of parameters, such as the binder type/amount and aggregates nature used in the mix. These factors can hinder the practical benchmark of concrete mixtures proportioned with distinct raw materials. Thus, six concrete mixtures incorporating two types of aggregates (granite and limestone) and two ground granulated blast furnace slag cement replacements (e.g. 0%, 35%, and 70%) were manufactured for this research. Moreover, three distinct ER techniques (e.g. Bulk, Surface, and Internal) and compressive strength tests were performed at different concrete ages. Results show that the binder replacement may significantly affect ER results over time, whereas the aggregate type presented a less significant impact.


Document: 

SP-349_13

Date: 

April 22, 2021

Author(s):

Gonzalo A. Lozano Rengifo, Mayra T. de Grazia, Leandro F. M. Sanchez, and Edward G. Sherwood

Publication:

Symposium Papers

Volume:

349

Abstract:

Reducing Normal Portland Cement (NPC) has been a major concern of concrete industry and research community over the last 2-3 decades. As much as 8% of the global CO2 emissions stem from clinker production. Hence, a wide number of research projects have been focusing on reducing NPC in cementitious materials using numerous strategies such as the use of supplementary cementing materials (SMC’s), limestone fillers (LF) and/or advanced mixproportioning techniques. Yet, the impact of these procedures on the overall behaviour of materials with low NPC content, especially in the fresh state and long-term durability, is still not fully understood. This work aims to understand the influence of the distance between the fine particles, the so-called Inter-Particle Separation (IPS), on the fresh state behaviour of cement-base pastes designed through the use of Particle Packing Models and incorporating LF. Evaluations on the fresh (i.e. rheological behaviour and setting time) and hardened states (compressive strength) were conducted in all mixtures. Results show that IPS directly correlates with the viscosity of cementbase pastes for all shear rates appraised. Moreover, the use of LF increases the hydration rate of NPC pastes. Finally, it is clear that the water-to-cement ratio keeps being the main factor controlling the compressive strength of cement pastes with reduced NPC content and high levels of LF replacement.


Document: 

SP-349_27

Date: 

April 22, 2021

Author(s):

Jean-Martin Lessard, Guillaume Habert, Arezki Tagnit-Hamou and Ben Amor

Publication:

Symposium Papers

Volume:

349

Abstract:

To decarbonize the portland cement sector worldwide, the Cement Sustainability Initiative recommends systematically reducing the clinker-to-cement ratio down to 60% by 2050. However, the sources of usable clinker substitutes - the supplementary cementitious materials (SCMs) - are unevenly distributed geographically and will become increasingly scarce in the future. Through a time-series material-product chain analysis, this paper investigates the multi-regional and multi-sectorial (cement, coal-fired electricity, and steel sectors) interactions that occur when increasing demand for SCMs in eastern Canada and Northeastern U.S., up to 2050. It tracks the trade effects and how it affects region-specific domestic flows of raw and secondary materials, end-product products, and greenhouse gas emissions. Although the lever is favorable overall, the results show unintended economic and environmental consequences across regions, with winners and losers. At the material level, benefits are influenced by the local availability of SCMs, which disadvantages Canadian regions due to the increasing remoteness of supply to meet demand. At the product level, decoupling blended cement production capacity from clinker production capacity allows the U.S. regions to reduce their dependence on Canadian cement imports. These new perspectives provide key geopolitical, environmental, and economic insights for better decision-making when developing sustainable initiatives.


Document: 

SP-349_39

Date: 

April 22, 2021

Author(s):

Luigi Coppola, Denny Coffetti, Elena Crotti and Gabriele Gazzaniga

Publication:

Symposium Papers

Volume:

349

Abstract:

This paper presents an experimental study carried out to investigate the durability of one-part alkaliactivated slag (AAS) mortars in different aggressive environments, such as chloride- and sulphate-rich solutions or in presence of freezing-thawing cycles. The mixtures were manufactured at equal water content and were activated by using sodium silicate, potassium hydroxide and sodium carbonate in powder form. In particular, the behavior of AAS mortars with different alkali content was compared with that of mixtures based on Portland cement and blast-furnace cement. Results show that the alkali content is a key-parameter for the durability of these innovative binders. In fact, in mortars manufactured with an alkali content higher than 0.06 by binder mass, the strength loss is similar to those of mixtures based on blast furnace cement after 150 freeze/thaw cycles. On the contrary, the sulphate-rich solution promotes a stronger degradation of the slag-based mortars respect to that shown by cement-based mixtures, regardless of the alkali content. Finally, the strong deterioration of cement matrix promoted by the formation of oxychloride in CaCl2-rich environment is negligible in AAS mortars due to the lack of calcium hydroxide in the slag matrix.


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.