ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 160 Abstracts search results

Document: 

22-164

Date: 

April 1, 2024

Author(s):

Avinaya Tripathi, Sooraj A. O. Nair, Harshitsinh Chauhan, and Narayanan Neithalath

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Conventional approaches to concrete three-dimensional (3-D) printing relies on printing concrete in a straight (linear) print path, with layers overlaid on top of each other. This results in interlayer and interfilament joints being potential weak spots that compromise the mechanical performance. This paper evaluates simple alterations to the print geometry to mitigate some of these effects. A printable mixture with 30% of limestone powder replacing cement (by mass), with a 28-day compressive strength of approximately 70 MPa in the strongest direction is used. S- and 3-shaped print paths are evaluated as alternatives to the linear print path. Staggering of the layers ensures that the interfilament joints do not lie on the same plane along the depth. Flexural strength enhancement is observed when print geometries are changed and/or layers are staggered. The study shows that print geometry modifications mitigate mechanical property reductions attributed to interfilament defects in 3-D concrete printing.

DOI:

10.14359/51740262


Document: 

23-276

Date: 

March 15, 2024

Author(s):

Ashley S. Carey, Grayson B. Sisung, Isaac L. Howard, Brad Songer, Dylan A. Scott, and Jay Shannon

Publication:

Materials Journal

Abstract:

Determining in-place properties of mass concrete placements is elusive, and currently, there are minimal to no test methods available that are both predictive and a direct measurement of mechanical properties. This paper presents a three-stage testing framework that utilizes common laboratory equipment and laboratory scale specimens to quantify the thermal and mechanical properties of mass high-strength concrete placements. To evaluate this framework, four mass placement of varying sizes and insulations were cast where temperature histories were measured at several locations within each placement where maximum temperatures of 107 to 119°C were recorded. The laboratory curing protocols were then developed using this mass placement temperature data and the three-stage testing framework to cure laboratory specimens to represent each mass placement. Laboratory curing protocols developed for center and intermediate regions of the mass placements reasonably replicated thermal histories of the mass placements, while the first stage of the three-stage framework reasonably replicated temperatures near the edge of the mass placements. Additionally, there were statistically significant relationships detected between calibration variables used to develop laboratory curing protocols and measured compressive strength. Overall, the proposed three-stage testing framework is a measurable step towards creating a predictive laboratory curing protocol by accounting for the mixture characteristics of thermo-mechanical properties of high-strength concretes.

DOI:

10.14359/51740705


Document: 

22-100

Date: 

December 1, 2023

Author(s):

Stephen Wright and Laura Redmond

Publication:

Materials Journal

Volume:

120

Issue:

6

Abstract:

Exposure to high temperature is well known to cause concrete degradation and lead to compressive strength loss. However, most research focuses on concrete exposed to high temperatures for more than 1 hour, and the available predictive equations for concrete strength loss due to heat exposure do not consider the effects of concrete thermal mass or account for variation in concrete thermal properties. This work proposes a methodology to create a predictive equation for the compressive strength loss in concrete exposed to heat. The proposed method leverages concrete temperature data from transient thermal analyses of concrete specimens correlated to results from experimental testing. The resulting equation from the analyzed data set predicted compressive strength loss with a root-mean-square error (RMSE) of 1.35% absolute error of the measured strength loss, and the maximum absolute underprediction in strength loss was 12.4% across all 26 cases examined.

DOI:

10.14359/51739145


Document: 

23-083

Date: 

December 1, 2023

Author(s):

Ben Wang, Abdeldjelil Belarbi, Mina Dawood, and Bora Gencturk

Publication:

Materials Journal

Volume:

120

Issue:

6

Abstract:

This paper presents the findings of an experimental study on the corrosion performance of both conventional and corrosionresistant steel reinforcements in normal-strength concrete (NC), high-performance concrete (HPC), and ultra-high-performance concrete (UHPC) columns in an accelerated corrosion-inducing environment for up to 24 months. Half-cell potential (HCP), linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS) methods were used to assess the corrosion activities and corrosion rates. The reinforcement mass losses were directly measured from the specimens and compared to the results from electrochemical corrosion rate measurements. It was concluded that UHPC completely prevents corrosion of reinforcement embedded inside, while HPC offers higher protection than NC in the experimental period. Based on electrochemical measurements, the average corrosion rate of mild steel and high-chromium steel reinforcement in NC in 24 months were, respectively, 6.6 and 2.8 times that of the same reinforcements in HPC. In addition, corrosion-resistant steel reinforcements including epoxycoated reinforcing bar, high-chromium steel reinforcing bar, and stainless-steel reinforcing bar showed excellent resistance to corrosion compared to conventional mild steel reinforcement. There was no active corrosion observed for epoxy-coated and stainless steel reinforcements during the 24 months of the accelerated aging; the average corrosion rateS of high-chromium steel was 50% of that of mild steel in NC based on the electrochemical corrosion measurements; and the average mass loss of high-chromium steel was 47% and 75% of that of mild steel in NC and HPC, respectively. The results also showed that the LPR method might slightly overestimate the corrosion rate. Finally, pitting corrosion was found to be the dominant type of corrosion in both mild and high-chromium steel reinforcements in NC and HPC columns.

DOI:

10.14359/51739153


Document: 

22-372

Date: 

December 1, 2023

Author(s):

J. Brown, L. E. Al-Hasani, J. Park, K. E. Kurtis, R. Gentry, and Y. K. Cho

Publication:

Materials Journal

Volume:

120

Issue:

6

Abstract:

Thermal management of mass concrete can adversely impact a project’s cost and schedule, both during planning and in execution. Nomograms are presented as aids to quickly identifying and making tradeoffs among promising thermal management options. First, the temperature of fresh concrete and a worst-case adiabatic temperature estimate is provided by a nomogram based on simple physical models. A subsequent nomogram accounts for the impact of size, shape, and environment and is based on a surrogate model generated from many three-dimensional (3-D) finite element simulations without postcooling. Finally, nomograms for postcooling are given, similarly founded on finite element-derived surrogate models, for two classes of cooling pipe layouts. The use of these nomograms, with an awareness of their estimated error, is discussed for the initial development of mass concrete thermal management plans.

DOI:

10.14359/51739148


12345...>>

Results Per Page