ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 323 Abstracts search results

Document: 

SP-360_35

Date: 

March 1, 2024

Author(s):

Ramin Rameshni, PhD, P.Eng., Reza Sadjadi, PhD, P.Eng, Melanie Knowles, P.Eng., M.Eng.

Publication:

Symposium Papers

Volume:

360

Abstract:

Deterioration of concrete bridges has resulted in reduction of their service lives and increase in required maintenance which is associated with cost and inconvenience to the public. A prevalent cause of concrete bridge deterioration is corrosion which initiates by chloride ions penetration past the protecting layers and by corroding the steel reinforcement. Because corrosion in prestressed concrete members has more serious consequences than in non-prestressed reinforced concrete, it is important that bridge designers and inspectors be aware of the potential problems and environments that may cause the issue and address them as soon as they are detected. This paper discusses a case study of a highway bridge (Hyndman Bridge, Ontario) including its deterioration, causes, mitigation measures, structural evaluation and the selected repair method. The rehabilitation design is based on guidelines of the latest editions of the CHDBC and ACI 440.2R. CFRP strengthening techniques have been proposed to address the flexure and shear deficient capacity of deteriorated girders. It is concluded that by using a suitable repair methodology employing CFRP, it is possible to upgrade the bridge to comply with the latest requirements of the code and increase the service life of the structure which otherwise would have needed imminent replacement.

DOI:

10.14359/51740647


Document: 

SP-360_45

Date: 

March 1, 2024

Author(s):

C. Barris, F. Ceroni, A. Perez Caldentey

Publication:

Symposium Papers

Volume:

360

Abstract:

Serviceability checks in Reinforced Concrete (RC) elements involves the verification of crack width mainly aimed to limit the exposure of the steel reinforcement to corrosion and chemical attack and, thus, improve durability. Classical approaches for assessing the crack width in RC elements provide the calculation of two terms: 1) the average crack spacing, and 2) the average difference between the strain in the steel reinforcement and in the concrete in tension referred to the average crack spacing. A similar approach can be assumed valid also for RC elements strengthened with externally bonded Fiber Reinforced Polymer (FRP) materials, taking into account the additional tension stiffening effect provided by the external reinforcement.

This paper presents the comparisons of some existing code formulations for predicting crack spacing and crack width in RC elements with the experimental results of a database collected by the Authors and concerning tests on RC beams and ties externally bonded with different types and configurations of FRP materials. The paper is mainly aimed to check the reliability of the existing equations provided by codes in order to address the future assessment of reliable design provisions for cracking verifications in RC elements strengthened with FRP materials. The comparisons have evidenced, indeed, some useful issues for the design provisions: 1) larger scatter in the predictions of crack width than in crack spacing and, in particular, for ties, 2) limited effect of shrinkage on crack width, 3) necessity of taking into account the external reinforcement in crack spacing formulations, 4) good reliability of mechanical models for calculating cracks width.

DOI:

10.14359/51740657


Document: 

SP-360_41

Date: 

March 1, 2024

Author(s):

Yasser M. Selmy, Amr E. Abdallah, and Ehab F. El-Salakawy

Publication:

Symposium Papers

Volume:

360

Abstract:

The seismic performance of reinforced concrete (RC) structures relies on their ability to dissipate earthquake-induced energy through hysteric behavior. Ductility, energy dissipation, and viscous damping are commonly used as performance indicators for steel-RC seismic force-resisting systems (SFRSs). However, while several previous studies have proposed energy-based indices to assess energy dissipation and damping of steel-RC SFRSs, there is a lack of research on fiber-reinforced polymer (FRP)-RC structures. This study examines the applicability of the existing energy dissipation and damping models developed for steel-RC columns to glass FRP (GFRP)-RC ones, where the relationships between energy indices and equivalent viscous damping versus displacement ductility were analyzed for GFRP-RC circular columns from the literature. In addition, prediction models were derived to estimate energy dissipation, viscous damping, and stiffness degradation of such types of columns. It was concluded that similar lower limit values for energy-based ductility parameters of steel-RC columns can be applied to GFRP-RC circular columns, whereas the minimum value and analytical models for the equivalent viscous damping ratio developed for steel-RC columns are not applicable. The derived models for energy indices, viscous damping, and stiffness degradation had an R2 factor of up to 0.99, 0.7, and 0.83, respectively. These findings contribute to the development of seismic design provisions for GFRP-RC structures, addressing the limitations in current codes and standards.

DOI:

10.14359/51740653


Document: 

SP-360_30

Date: 

March 1, 2024

Author(s):

Yasser M. Selmy and Ehab F. El-Salakawy

Publication:

Symposium Papers

Volume:

360

Abstract:

The seismic performance of reinforced concrete (RC) bridge columns subjected to multidirectional ground motions is a critical issue, as these columns can experience axial compression, bending, and torsional loading. Moreover, steel corrosion is a significant concern in existing bridges, leading to deficiencies in steel-RC structural members. The use of glass fiber-reinforced polymer (GFRP) reinforcement has been established as a practical and effective solution to mitigate the corrosion-related issues associated with traditional steel reinforcement in concrete structures. However, the dissimilar mechanical properties of GFRP and steel have raised apprehensions regarding its feasibility in seismic-resistant structures. The current study involves conducting an experimental investigation to assess the feasibility of utilizing GFRP reinforcement as a substitute for conventional steel reinforcement in circular RC bridge columns subjected to cyclic lateral loading, which induces shear, bending, and torsion. One column was reinforced with GFRP bars and stirrups, while the other column, served as a control and was reinforced with conventional steel reinforcement. The aim of this investigation was to analyze the lateral displacement deformability and energy dissipation characteristics of the GFRP-RC column. The results showed that GFRP-RC column exhibited stable post-peak behavior and high levels of deformability under the applied combined loading. Additionally, with a torsion-to-bending moment ratio of 0.2, both columns reached similar lateral load and torsional moment capacities and were able to attain lateral-drift capacities exceeding the minimum requirements of North American design codes and guidelines.

DOI:

10.14359/51740642


Document: 

SP-360_23

Date: 

March 1, 2024

Author(s):

Raphael Kampmann, Tim Rauert, Niklas Pelka, und Bastian Franzenburg

Publication:

Symposium Papers

Volume:

360

Abstract:

Corrosion of reinforcement steel is a major issue for many structural concrete components, because it leads to strength reduction and may significantly reduce the service life. For this reason, fiber-reinforced polymer rebars (FRP rebars) have been developed, as they represent a viable alternative that may replace reinforcing steel for structures that are particularly susceptible to corrosion issues. However, structural design philosophies for these new materials are still in development and further research is needed to implement FRP rebars properly and safely in design codes but also to ensure that design calculations properly predict the actual behavior and performance of FRP reinforced structures.

This study was conducted to evaluate the strength and structural deformation behavior of flexural beams that were designed according to Eurocode 2 and, for comparison, according to different design methods pro-posed for FRP reinforced structures. With regard to the development of a uniform design concept for alternative reinforcement materials existing in Germany/Europe, different bending design concepts includ-ing the serviceability limit state were evaluated. In addition, the theoretically calculated and predicted strength/deformation were compared to the experimentally obtained measurements. A total of 15 flexu-ral beams, with ans overall length of 4.5 m (177 in.), a width of 200 mm (7.8 in.), and a height of 400 mm (15.8 in.), were cast; three of these beams (designed according to Eurocode 2) featured traditional steel rein-forcement, to serve as control group. The remaining 12 flexural beams were evenly allocated to capture the two alternative reinforcement materials, while generating three different reinforcement distribution patterns with comparable reinforcement ratios (equivalent cross-sectional areas). Thus, a total of six subgroups –three with GFRP and three with BFRP – each with two specimens, were analized. To test all beam in pure bending and to eliminate the influence from shear forces, two equally increasing loads were applied at the (longitudinal) third-points of the beams. Both deflections and loads were measured at several points to evaluate the structural performance of the FRP reinforced structural members.

The results showed that the deflection of the glass fiber reinforced bars at the design load capacity measured twice as much as the deflection of the control group. Almost three times as much deflection (at the same load) was observed for the concrete beams reinforced with basalt fiber rebars. In addition, it was observed that the concrete beams with glass and basalt fiber reinforcement bars showed a nearly elastic-elastic behavior up to the point of failure, whereas the steel-reinforced concrete beams showed an elastic-plastic behavior. However, the deformational behavior differed between the various beam types. While the prevailing equations properly captured the post-cracking performance of traditionally reinforced concrete beams, they do not adequately predict the deflections of FRP reinforced concrete beams. From the measurements and analyses, it was concluded that the serviceability limit state (SST) is more critical than the ultimate limit state (LTS) for the design of concrete flexural beams reinforced with FRP rebars.

DOI:

10.14359/51740635


12345...>>

Results Per Page