ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-3 of 3 Abstracts search results

Document: 

15-268

Date: 

May 1, 2016

Author(s):

Lihe Zhang, Dudley Morgan, and Sidney Mindess

Publication:

Materials Journal

Volume:

113

Issue:

3

Abstract:

The question is sometimes asked: “How does the durability of shotcrete compare to that of cast-in-place concrete?” The durability of shotcrete and concrete structures is strongly influenced by their transport properties. While considerable data are available regarding the transport properties of cast-in-place concrete, little has been published concerning shotcrete transport properties. This study is directed at addressing this deficiency so that factual data are made available regarding the comparative transport properties of both wet, and dry-mix shotcretes and comparable cast-in-place concretes. In this study, a comparative evaluation was conducted on cast-in-place concrete; cast wet-mix shotcrete; sprayed wet-mix shotcrete; and sprayed dry-mix shotcrete in mixtures with and without fly ash, silica fume, and accelerators. Plastic concrete and wet-mix shotcrete tests conducted included slump, air content, and setting time. Hardened concrete and shotcrete tests conducted included compressive strength at 7 and 28 days; ASTM C642 boiled absorption and volume of permeable voids; ASTM C1202 rapid chloride permeability (RCP); ASTM C1792 rate of water absorption; and U.S. Navy specification UFGS 03 31 29-3 (chloride permeability test). Calculated transport property values compared included boiled absorption (BA) and volume of permeable voids (VPV), Coulomb values in RCP test, coefficient of diffusion (Diff[OH–]), effective coefficient of diffusion (Diff[OH–] x VPV), permeability (k) and tortuosity, in U.S. Navy specification UFGS 03 31 29-3 tests. This study demonstrates that properly applied wet-mix and dry-mix shotcretes can provide equivalent or superior transport properties (for example, ionic diffusion and permeability), and hence durability, to cast-in-place concrete.

DOI:

10.14359/51688829


Document: 

91-M10

Date: 

January 1, 1994

Author(s):

ACI Committee 506

Publication:

Materials Journal

Volume:

91

Issue:

1

Abstract:

This specification contains the construction requirements for the application of shotcrete. Both wet-mix and dry-mix shotcrete are specified, and the minimum standards for testing, materials, and execution are provided.

DOI:

10.14359/4453


Document: 

90-M10

Date: 

January 1, 1993

Author(s):

ACI Committee 544

Publication:

Materials Journal

Volume:

90

Issue:

1

Abstract:

Guide describes the current technology in specifying, proportioning, mixing, placing, and finishing of steel fiber reinforced concrete (SFRC). Much of the current conventional concrete practice applies to SFRC. The emphasis in the guide is to describe the differences between conventional concrete and SFRC and how to deal with them. Guidance is provided in mixing techniques to achieve uniform mixtures, placement techniques to assure adequate compaction, and finishing techniques to assure satisfactory surface textures. Sample mix proportions are tabulated. A listing of references is provided covering proportioning, properties, refractory uses, shotcrete technology, and general information on SFRC.

DOI:

10.14359/4046


Results Per Page