ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 842 Abstracts search results

Document: 

SP360

Date: 

March 1, 2024

Author(s):

ACI Committee 440

Publication:

Symposium Papers

Volume:

360

Abstract:

The 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16) was organized by ACI Committee 440 (Fiber-Reinforced Polymer Reinforcement) and held on March 23 and 24, 2024, at the ACI Spring 2024 Convention in New Orleans, LA. FRPRCS-16 gathers researchers, practitioners, owners, and manufacturers from the United States and abroad, involved in the use of FRPs as reinforcement for concrete and masonry structures, both for new construction and for strengthening and rehabilitation of existing structures. FRPRCS is the longest running conference series on the application of FRP in civil construction, commencing in Vancouver, BC, in 1993. FRPRCS has been one of the two official conference series of the International Institute for FRP in Construction (IIFC) since 2018 (the other is the CICE series). These conference series rotate between Europe, Asia, and the Americas, with alternating years between CICE and FRPRCS. The ACI convention has previously cosponsored the FRPRCS symposium in Anaheim (2017), Tampa (2011), Kansas City (2005), and Baltimore (1999). This Special Publication contains a total of 52 peer-reviewed technical manuscripts from 20 different countries from around the world. Papers are organized in the following topics: (1) FRP Bond and Anchorage in Concrete Structures; (2) Strengthening of Concrete Structures using FRP Systems; (3) FRP Materials, Properties, Tests and Standards; (4) Emerging FRP Systems and Successful Project Applications; (5) FRP-Reinforced Concrete Structures; (6) Advances in FRP Applications in Masonry Structures; (7) Seismic Resistance of FRP-Reinforced/Strengthened Concrete Structures; (8) Behavior of Prestressed Concrete Structures; (9) FRP Use in column Applications; (10) Effect of Extreme Events on FRP-Reinforced/Strengthened Structures; (11) Durability of FRP Systems; and (12) Advanced Analysis of FRP Reinforced Concrete Structures. The breadth and depth of the knowledge presented in these papers is clear evidence of the maturity of the field of composite materials in civil infrastructure. The ACI Committee 440 is witness to this evolution, with its first published ACI CODE-440.11, “Building Code Requirements for Structural Concrete with Glass Fiber Reinforced Polymer (CFRP) Bars,” published in 2022. A second code document on fiber reinforced polymer for repair and rehabilitation of concrete is under development. The publication of the sixteenth volume in the symposium series could not have occurred without the support and dedication of many individuals. The editors would like to recognize the authors who diligently submitted their original papers; the reviewers, many of them members of ACI Committee 440, who provided critical review and direction to improve these papers; ACI editorial staff who guided the publication process; and the support of the American Concrete Institute (ACI) and the International Institute for FRP in Construction (IIFC) during the many months of preparation for the Symposium.

DOI:

10.14359/51740670


Document: 

SP-360_40

Date: 

March 1, 2024

Author(s):

Lin S-H, Kim I, Borwankar A, Kanitkar R, Hagen G, Shapack G

Publication:

Symposium Papers

Volume:

360

Abstract:

Fiber reinforced polymers (FRP) are commonly used to seismically retrofit concrete structural walls. Limited design guidance for the seismic application of FRP strengthening is currently available to designers in guidelines such as ACI PRC-440.2-17 or standards like ASCE/SEI 41-17. This paper presents the description and results of an experimental effort to investigate the effectiveness of FRP retrofitted concrete walls. The specimen wall thickness was either 6 in or 12 in, which represents a typical range of wall thickness seen in older buildings. To better reflect the most common applications seen in the industry, the walls were retrofitted with FRP, and anchored with fiber anchors only on one side of the wall. The study demonstrates that the effectiveness of FRP is reduced as the wall thickness increases and that the FRP must be anchored to the wall for any tangible benefit. The results are used to assess the current provisions in ACI PRC-440.2-17 and ASCE/SEI 41-17. It is apparent that additional testing is required to better understand the complexities involved in the FRP strengthening of shear walls and such testing is scheduled for the near future.

DOI:

10.14359/51740652


Document: 

SP-360_07

Date: 

March 1, 2024

Author(s):

Jaeha Lee, Kivanc Artun, Charles E. Bakis, Maria M. Lopez and Thomas E. Boothby

Publication:

Symposium Papers

Volume:

360

Abstract:

Small-scale plain concrete precracked beams strengthened with glass fiber reinforced polymer (GFRP) sheets underwent testing in 3-point flexure to assess variations in the FRP-concrete Mode II interfacial fracture energy after 6 and 13 years of sustained loading in indoor and outdoor environments. The Mode II fracture energy of the interfacial region, GF, was determined by analyzing strain profiles along the length of the FRP sheet, which were obtained using digital image correlation and photoelastic techniques. In the experiments conducted after conditioning, higher GF values were observed as the debonded zone progressed from the region of sustained shear stress transfer to the unstressed section of the interfacial region, particularly in beams subjected to outdoor conditioning. In the interfacial region near the notch, GFRP beams showed reductions in GF in both indoor and outdoor environments. For outdoor beams with GFRP sheets, there was no additional degradation in GF when the FRP was exposed to direct sunlight, in comparison to beams with the FRP exposed to indirect sunlight.

DOI:

10.14359/51740619


Document: 

SP-360_50

Date: 

March 1, 2024

Author(s):

Haitham A. Ibrahim, Mohamed F. M. Fahmy, and Seyed Saman Khedmatgozar Dolati

Publication:

Symposium Papers

Volume:

360

Abstract:

This study numerically investigates the long-term effectiveness of using externally bonded fiber-reinforced polymer (FRP) plates as a strengthening technique for reinforced concrete (RC) beams. A two-dimensional finite element model (FEM) that can accurately predict the flexural behavior of FRP strengthened RC beams, is developed. Weathering exposure time of 0.0, 15.5, 35, and 75 years were considered. In total, 28 different concrete beams were modelled using the developed FEM. The results show that prolonged exposure to natural weathering can cause premature FRP debonding, even before reaching the yielding load. The ultimate load capacity, midspan deflection, and ductility of strengthened RC beams can be reduced by up to 38%, 62%, and 100%, respectively. In addition, the findings raised concerns about the applicability of the ACI 440.2R-17 provisions for calculating the design flexural strength of FRP strengthened RC beams with prolonged exposure to natural weathering. To ensure a safe design for strengthened beams with FRP debonding or concrete crushing failure modes, this paper recommends an additional reduction factor ranging from 0.8 to 0.9. Furthermore, periodic inspection using non-destructive testing and FRP anchorage system are highly recommended for both existing and new applications of FRP in structures.

DOI:

10.14359/51740662


Document: 

SP-360_51

Date: 

March 1, 2024

Author(s):

Todor Zhelyazov, Eythor Rafn Thorhallsson, Jonas Thor Snaebjornsson

Publication:

Symposium Papers

Volume:

360

Abstract:

The study delves into modeling the interface between Fiber-Reinforced Polymer (FRP) and concrete, with a specific emphasis on simulating the gradual deterioration of bond strength. A model rooted in continuum damage mechanics is integrated with an empirically derived relationship to address interfacial shear failure. Material models are defined for the concrete, the externally bonded FRP reinforcement, and the adhesive layer. These material models are implemented in finite element simulations, replicating experimental setups widely used to investigate the FRP-concrete interface. Key results are reported and discussed. More precisely, the numerically obtained load-slip relationships for the interface and visualizations of the damaged zones in concrete are provided. The numerical results are in close agreement with existing experimental data. The finite element analyses suggest that concrete degradation is not limited to the areas near the adhesive joint. This implies that the adhesive joint could influence the overall behavior of the structural elements, even when debonding failures are prevented by anchorage devices.

DOI:

10.14359/51740663


12345...>>

Results Per Page