ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 587 Abstracts search results

Document: 

22-290

Date: 

May 1, 2024

Author(s):

Ahmed T. Omar, Basem H. AbdelAleem, Assem A. A. Hassan

Publication:

Materials Journal

Abstract:

This paper investigates the structural performance of lightweight self-consolidating concrete (LWSCC) and lightweight vibrated concrete (LWVC) beam-column joints reinforced with mono-filament polyvinyl alcohol (PVA) fibers under quasi-static reversed cyclic loading. A total of eight exterior beam-column joints with different lightweight aggregate types (coarse and fine expanded slate aggregates), different PVA fiber lengths (8-12 mm [0.315-0.472 in.]), and different percentages of fiber (0.3% and 1%) were cast and tested. The structural performance of the tested joints was assessed in terms of failure mode, hysteretic response, stiffness degradation, ductility, brittleness index, and energy dissipation capacity. The results revealed that LWSCC specimens made with expanded slate fine aggregates (LF) appeared to have better structural performance under reversed cyclic load compared to specimens containing expanded slate coarse aggregates (LC). Shortening the length of PVA fibers enhanced the structural performance of LWSCC beam-column joints (BCJs) in terms of initial stiffness, load-carrying capacity, ductility, cracking activity, and energy dissipation capacity compared to longer fibers. The results also indicated that using an optimized LWVC mixture with 1% PVA8 fibers and a high LC/LF aggregate ratio helped to develop joints with significantly enhanced load-carrying capacity, ductility, and energy dissipation while maintaining reduced self-weight of 28% lower than normal-weight concrete.

DOI:

10.14359/51740773


Document: 

23-236

Date: 

May 1, 2024

Author(s):

Tiago Canavarro Cavalcante, Romildo Dias Toledo Filho, Oscar Aurelio Mendoza Reales

Publication:

Materials Journal

Abstract:

High cement content is often found in concrete mix designs to achieve the unique fresh-state behavior requirements of 3D Printable Concrete (3DPC), i.e., to ensure rapid stiffening of an extruded layer without collapsing under the stress applied by the following layers. Some materials with high water absorption, such as recycled concrete aggregates, have been incorporated in concrete mix designs to minimize environmental impact, nevertheless, the fine powder fraction that remains from the recycled aggregate processing still poses a challenge. In the case of 3DCP, few studies are available regarding mix designs using Recycled Concrete Powder (RCP) for 3D printing. In this context, this study presents the use of RCP as a filler to produce a printable mixture with low cement content. An RCP with 50 μm average particle size was obtained as a by-product from Recycled Concrete Aggregate production. Portland cement pastes were produced with 0%, 10%, 20%, 30%, 40% and 50% of cement mass replacement by RCP to evaluate its effects on the hydration reaction, rheology, and compressive strength. It was found that the studied RCP replacement was not detrimental for the hydration reaction of Portland cement during the initial hours, and at the same time it was capable of modifying the rheological parameters of the paste proportionally to the packing density of its solid fraction. The obtained results indicated the viability of 3DCP with up to 50% cement replacement by RCP. It was concluded that RCP presents good potential for decreasing the cement consumption of 3DPC, which in turn could decrease its associated environmental impact while providing a destination for a by-product from recycled concrete aggregate production.

DOI:

10.14359/51740778


Document: 

22-288

Date: 

April 1, 2024

Author(s):

Christian Negron-McFarlane, Eric Kreiger, Lynette Barna, Peter Stynoski, and Megan Kreiger

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

An experimental investigation was carried out using the volumetric proportioning approach to achieve printable portland cement concrete mixtures. The types of aggregates investigated were rounded pea gravel and coarse and fine sand. The test matrix of potential concrete mixtures was prepared based on watercement ratios (w/c) of 0.46 to 0.48, sand-to-stone ratios (sa/st) of 1.18 to 1.91, and paste-aggregate ratios (p/a) of 0.74 to 0.81. The workability and early-age strength of fresh concrete were characterized by field-friendly flow-table and unconfined compressive strength (UCS) tests. Test results indicated that the w/c, sa/st, and p/a all significantly affect fresh concrete pumpability and early-age strength. The overall research results revealed that pumpability and buildability can be evaluated with these two tests. The results of these two tests together are used to define a printable region.

DOI:

10.14359/51740265


Document: 

22-286

Date: 

April 1, 2024

Author(s):

K. Sriram Kompella, Andrea Marcucci, Francesco Lo Monte, Marinella Levi, and Liberato Ferrara

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

The early-age material parameters of three-dimensional (3-D)-printable concrete defined under the umbrella of printability, namely, pumpability, extrudability, buildability, and the “printability window/open time,” are subjective measures. The need to correlate and successively substitute these subjective measures with objective and accepted material properties, such as tensile strength, shear strength, and compressive strength, is paramount. This study validates new testing methodologies to quantify the tensile and shear strengths of printable fiber-reinforced concretes still in their fresh state. A tailored mixture with high sulfoaluminate cement and nonstructural basalt fibers has been assumed as a reference. The relation between the previously mentioned parameters and rheological parameters, such as yield strength obtained through International Center for Aggregates Research (ICAR) rheometer tests, is also explored. Furthermore, in an attempt to pave the way and contribute toward a better understanding of the mechanical properties of 3-D-printed concrete, to be further transferred into design procedures, a comparative study analyzing the work of fracture per unit crack width in three-point bending has been performed on printed and companion nominally identical monolithically cast specimens, investigating the effects of printing directions, position in the printed circuit, and specimen slenderness (length to depth) ratio.

DOI:

10.14359/51740302


Document: 

23-152

Date: 

April 1, 2024

Author(s):

Ronald Lichtenwalner and Joseph T. Taylor

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

This experimental study evaluated the correlation between measured concrete expansion from a modified version of the miniature concrete prism test (MCPT) with the concentration of chemical markers leached from the prisms into an alkaline soak solution. Fifteen concrete mixture designs were tested for expansion and soak solution concentrations over time. The changes in expansion and soak solution concentrations were found to correlate well even with variations in alkali loading and substitution of cement with Class F fly ash. A model was developed to estimate the expansion potential of concrete based on an expansion reactivity index (ERI) that incorporated the concentrations of silicon, sulfate, calcium, and aluminum. The relationship between ERI and expansion was then used to identify potentially expansive concrete mixtures using the ERI of cores taken from a structure exhibiting potential alkalisilica reaction (ASR) expansion and concrete cylinders matching the mixture designs of the MCPT specimens.

DOI:

10.14359/51740374


12345...>>

Results Per Page