ACI Global Home Middle East Region Portal Western Europe Region Portal
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 12 Abstracts search results
Document:
SP344
Date:
October 21, 2020
Publication:
Symposium Papers
Volume:
344
Abstract:
The design and analysis of structural concrete elements is a topic of practical interest. While sometimes the effect of torsion is only addressed based on simple examples, practicing engineers are faced with the need to include the effects of torsion in their designs of a variety of structures and load arrangements. This Special Publication (SP) contains papers about the design of reinforced and prestressed concrete elements for torsion. The focus of the SP is on practical design examples according to different concrete bridge and building codes. In addition to the design examples, papers dealing with the current state of the art on torsion in structural concrete, as well as recent advances in the analysis and design of concrete elements failing in torsion, are added. The objectives of this SP are to provide practicing engineers with the tools necessary to better understand and design concrete elements for torsion. The need for this SP arose after the development of the State-of-the-Art Report on Torsion of Joint ACI-ASCE Committee 445 “Shear and Torsion” and Subcommittee 445-E “Torsion”. Usually, the attention that is paid to torsion in engineering education is limited to simplified textbook examples. The examples in this SP show applications in bridges and buildings, where the torsion design is combined with the design for flexure and shear. Additionally, the examples in this SP give insight on the different outcomes when using different bridge and building codes. Finally, the papers that include theoretical considerations give practicing engineers a deeper understanding and background on torsion in structural concrete. The views from an international group of authors are included in this SP, subsequently representing a variety of building and bridge codes the engineer may encounter in practice. In particular, authors from the United States, Canada, Ecuador, the Netherlands, Italy, Greece, and the Czech Republic contributed to the papers in this SP. Views from academia and the industry are included. To exchange experience in the design of torsion-critical structures as well as new research insights on torsion, Joint ACI-ASCE Committee 445 and Subcommittee 445-E organized two sessions titled “Examples for the Design of Reinforced and Prestressed Concrete Members under Torsion” at the ACI Fall Convention 2020. This SP contains several technical papers from experts who presented their work at these sessions, in addition to papers submitted for publication only. In summary, this SP addresses numerous practical examples of structural elements under torsion in bridges and buildings, as well as insights from recent research applied to practical cases of elements under torsion. The co-editors of this SP are grateful for the contributions of the authors and sincerely value the time and effort they invested in preparing the papers in this volume, as well as the contributions of the reviewers of the manuscripts.
DOI:
10.14359/51729287
SP-344_10
October 1, 2020
Author(s):
Gary G. Greene, Jr. and David L. Hartmann
The Joint ACI-ASCE Committee 445 published a document titled Report on Torsion in Structural Concrete that contained an in-depth review of historical theory development, design models, and simplified design procedures for the effect of torsion in concrete structures. That document contained three design examples that were relatively simple. An important goal of this ACI Special Publication is to provide more realistic design examples that are usable by design professionals. This paper satisfies that goal by showing a detailed solution to a realistic example that has been encountered on several occasions by one of the authors. Another goal of the ACI Special Publication is to show applications where torsion is combined with flexure and shear. In this example, the torsional effects are combined with biaxial flexure and biaxial shear forces. This example includes a check of the new provisions in ACI 318-19 for bi-axial shear effects. This paper shows a detailed solution for the design of a reinforced concrete grade beam subjected to torsional effects combined with biaxial shear and biaxial flexure. The grade beam is a portion of a structural screen wall system. A 25 psf (1.20 kPa) strength level wind pressure acts on a 20 ft (6.10 m) tall CMU wall supported by a continuous grade beam. The 21 in (533 mm) wide by 18 in (457 mm) deep grade beam is isolated from an expansive soil and is supported by drilled shafts 21 ft (6.40 m) on center. The wind load and gravity loads induce torsion, biaxial bending moments, and biaxial shear forces in the grade beam. This example shows how to calculate the internal forces in the grade beam at the critical section and design the required longitudinal and shear reinforcement according to the ACI 318-19 code. The design of the grade beam includes closed stirrups of #4 (Ø 12) bars spaced at 5.5 in (140 mm), five #8 (Ø 25) bars used near the top and bottom faces and one #6 (Ø 16) bar used at mid-height near the side faces.
The Joint ACI-ASCE Committee 445 published a document titled Report on Torsion in Structural Concrete that contained an in-depth review of historical theory development, design models, and simplified design procedures for the effect of torsion in concrete structures. That document contained three design examples that were relatively simple. An important goal of this ACI Special Publication is to provide more realistic design examples that are usable by design professionals. This paper satisfies that goal by showing a detailed solution to a realistic example that has been encountered on several occasions by one of the authors. Another goal of the ACI Special Publication is to show applications where torsion is combined with flexure and shear. In this example, the torsional effects are combined with biaxial flexure and biaxial shear forces. This example includes a check of the new provisions in ACI 318-19 for bi-axial shear effects.
This paper shows a detailed solution for the design of a reinforced concrete grade beam subjected to torsional effects combined with biaxial shear and biaxial flexure. The grade beam is a portion of a structural screen wall system. A 25 psf (1.20 kPa) strength level wind pressure acts on a 20 ft (6.10 m) tall CMU wall supported by a continuous grade beam. The 21 in (533 mm) wide by 18 in (457 mm) deep grade beam is isolated from an expansive soil and is supported by drilled shafts 21 ft (6.40 m) on center. The wind load and gravity loads induce torsion, biaxial bending moments, and biaxial shear forces in the grade beam. This example shows how to calculate the internal forces in the grade beam at the critical section and design the required longitudinal and shear reinforcement according to the ACI 318-19 code.
The design of the grade beam includes closed stirrups of #4 (Ø 12) bars spaced at 5.5 in (140 mm), five #8 (Ø 25) bars used near the top and bottom faces and one #6 (Ø 16) bar used at mid-height near the side faces.
10.14359/51728297
SP-344_08
Kevin S. Benítez C. and Eva O. L. Lantsoght
The design of a cast-in-place, post-tensioned concrete, multi-cell box girder bridge under combined torsion, shear, and flexure is presented in this example. The bridge covers three spans of different lengths, supported by two abutments and two bents; its cross-section consists of three 12 ft (3.7 m) lanes, two 10 ft (3.0 m) shoulders, and two concrete barriers. The detailed procedure for the design based on ACI 318-14 is presented, and a comparison is done with the design results for: AASHTO LRFD 2017, EN 1992-1-1:2004, and MC-2010. With this example, the authors illustrate the differences between provisions of the aforementioned codes for design of torsional effects, outlining the different theories and approaches used for each of these.
10.14359/51728295
SP-344_09
Camilo Granda Valencia and Eva Lantsoght
This paper provides a practical example of the torsion design of an inverted tee bent cap of a three-span bridge. A full torsional design following the guidelines of the ACI 318-19 building code is carried out and the results are compared with the outcomes from CSA-A23.3-04, AASHTO-LRFD-17, and EN 1992-1-1:2004 codes. Then, a summary of the detailing of the cross-section considering the reinforcement requirements is presented. The objective of this paper is to illustrate the application of ACI 318-19 when designing a structural element subjected to large torsional moments.
10.14359/51728296
SP-344_01
Large torsional moments, which need to be considered in a design, can result among others, in structures with an asymmetric layout or loading. To find the required longitudinal and transverse reinforcement to resist these torsional moments, the link between the three-dimensional action of the torsional moment and sectional analysis methods is necessary. This paper reviews the existing methods and code provisions for torsion. First, an overview of the principles of torsion from the mechanics perspective is given. Then, a survey of the available mechanical models for torsion is presented. Finally, the code provisions for torsion of ACI 318-19, CSA-A23.3-04, AASHTO-LRFD- 17, EN 1992-1-1:2004, and the fib Model Code 2010 are summarized. Additionally, current research topics on torsion in structural concrete are summarized. It is expected that with this paper, engineers will have a useful overview and background knowledge for the design and assessment of torsion-critical elements.
10.14359/51728288
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer