ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 12 Abstracts search results

Document: 

SP210-08

Date: 

April 1, 2003

Author(s):

C. Kassem, E. El-Salakawy, and B. Benmokrane

Publication:

Symposium Papers

Volume:

210

Abstract:

This paper presents the test results of 14 full-scale concrete beams. The beams were 3300 mm long with a rectangular cross-section of 200-mm width and 300-mm depth. Twelve beams were reinforced with carbon FRP composite bars and two reinforced with steel as control. Two newly developed types of CFRP bars with different surface textures were considered: the sand-coated ISOROD bars and the ribbed-deformed C-BAR. The beams were tested to failure in four-point bending over a clear span of 2750 mm. The results presented focus on the deflection behaviour of beams reinforced with CFRP bars, which have different bond, elasticity modulus, strain, and strength characteristics. The test results were compared to the predictions of some of the available models (ISIS-M03-01 design manual, ACI 440.1R-01 guidelines, and Razaqpur model). Based on the findings of the study, the validity of the design guidelines and the effectiveness of using the new CFRP bars as reinforcement for concrete beams were established.

DOI:

10.14359/12578


Document: 

SP210-06

Date: 

February 1, 2003

Author(s):

H. A. Rasheed, H. Charkas, and H. G. Melhem

Publication:

Symposium Papers

Volume:

210

Abstract:

The use of externally bonded FRP plates has been established as an effective means to strengthen RC beams in flexure and shear. Few investigators have attempted to propose minor modifications to the current ACI empirical equation orginally developed for the effective moment of inertia of unstrengthened RC beams. In contrast, the present work develops a rational procedure for calculating the deflections of beams at any load stage. The procedure assumes a trilinear moment-curvature response characterized by section flexural crack initiation, yielding and ultimate capacity. This model incorporates some tension stiffening effects ans assumes the section to be fully cracked only upon or near steel yielding. A generalized solution is presented for the case of beams having any extent of uncracked, partially-cracked and post yielded regions. The curvature distribution is determined for each region and closed form equations are developed for the cases of 4-point bending and uniform load. Comparisons with experiments indicate the effectiveness of the procedure for properly anchored plates. Parametric studies are conducted to explore the applicability of the ACI original and modified equations for a wide range of geometric and material properties. As a result, improved ACI equations are suggested for use in practical deflection calculations.

DOI:

10.14359/12576


Document: 

SP210-05

Date: 

February 1, 2003

Author(s):

F. A. Malhas and A. Rahman

Publication:

Symposium Papers

Volume:

210

Abstract:

ACI 318-99(1999) and EC2-92(1992) building design codes are the two major design code documents of reinforced concrete structures worldwide. Therefore, a detailed comparative analysis of these codes is justified and can be useful in understanding rational behind both codes. This type of comparative work can help identify iiscrepancies in either code and would substantiate their validity. In this regard, deflection computations and estimation of the flexural stiffness would be particularly attractive for detailed comparison. The analytical procedure adopted by ACI is particularly characterized by inconsistent correlation with test results, due to the fact that a number of factors affecting deflection have been ignored. In this study, detailed comparison with parametric analysis is conducted using the deflection provisions of ACI318-99 and EC2-92. First, the permissible deflections are compared and significant differences between the limits of the two codes are noted. The differences in the rationale of the deflection limits are identified. The span-to-depth ratio limits adopted by the two codes were found to have significant differences, with EC2 exhibiting more conservative limits. In comparing the two procedures for computing flexural deflection, all the pertinent quantities are investigated. These include: the cracking moment, the modulus of elasticity, the gross and cracked moment of inertia, the effective moment of inertia. A special form of the effecive moment of inertia equation is used to facilitate a parametric comparison between the two equations. Long-term flexural deflection is aslo compared and exhibits the differences between the two codes in relation to the impact of shrinkage, creep and compression reinforcement. This study is concluded by a numerical example that shows the differences between the codes in estimating short and long term deflection.

DOI:

10.14359/12575


Document: 

SP210-01

Date: 

February 1, 2003

Author(s):

D. Kaminetzky and P. C. Stivaros

Publication:

Symposium Papers

Volume:

210

Abstract:

Throughout the history of concrete construction, numerous construction failures have occurred involving excessive deflections and cracking of the completed structure. This paper presents two building construction cases where concrete slabs developed extensive cracking and excessive deflections soon after the slab construction and formwork removal. The effects of the shoring-reshoring operations, the rate of concrete strength development, as well as the effects of design details on the slab cracking and deflections, are investigated. The ACI 318 requirements of minimum thickness and deflection control are applied to both construction cases, and the adequacy of these code requirements is discussed. Based on the findings of this work it was concluded that the ACI 318 long term creep and shrinkage deflection calculation method does not adequately account for the early-age high construction loads.

DOI:

10.14359/12571


Document: 

SP210-07

Date: 

February 1, 2003

Author(s):

D. Svecova, S. H. Rizkalla, and G. Tadros

Publication:

Symposium Papers

Volume:

210

Abstract:

Serviceability of concrete members reinforced with FRP often governs the design. There are two main serviceability criteria to be satisfied: crack width and deflection. Prior to cracking the behaviour of concrete members reinforced with FRP is identical tot ehat of seel reinforced concrete. After cracking, due to the mechanical characteristics of FRP, the curvature increases rapidly. Therefore deflection of FRP reinforced members is typically larger, thus more critical than deflection of comparable members reinforced with steel. Crack width is often portrayed as less significant due to the excellent corrosion resistance of FRP products. However, high sustained strain in FRP at service loads may lead to stress corrosion primarily in glass-fibre reinforced polymer (GFRP), and the width of cracks needs to be limited for aesthetic reasons. This paper deals with the design of concrete reinforced with FRP to satisfy serviceability requirements. To achieve the goal, a simplified mathematical design using charts is developed for ISIS Canada (1) by the authors. The principles involved in developing these charts, and their applicability are discussed. To satisfy the crack width and deflection limitations of these members, allowable stress limits in FRP reinforcement are introduced.

DOI:

10.14359/12577


123

Results Per Page