ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Experimental Analysis and Evaluation of the Compressive Strength of Rubberized Concrete During Freeze–Thaw Cycles

Author(s): Sheng Sun, Xiaoyan Han, Aijiu Chen, Qing Zhang, Zhihao Wang & Keliang Li

Publication: IJCSM

Volume: 17

Issue:

Appears on pages(s):

Keywords: Compressive strength, Rubberized concrete, Mesostructure, Freeze–thaw cycles, Forecast model

DOI: 10.1186/s40069-023-00592-6

Date: 7/31/2023

Abstract:
Recycling scrap tires provides an alternative source of fine aggregates for the production of rubberized concrete and this will lead to significant increase in concrete frost resistance, environmental protection, and conservation of natural sand and gravel resources. In this paper, a total of 25 groups of rubberized concrete were produced by adding scrap tire rubber particles of different sizes, contents, and pretreatment methods to replace the fine aggregate, and their compressive strength during freeze–thaw cycles was studied from both the macro- and meso-perspectives. The results indicated that the decrease in concrete strength and weight was notably restricted by the presence of rubber particles during freeze–thaw cycles. The rubber fine aggregate with smaller particle sizes enhanced the concrete frost resistance more significantly, and the F100 of concrete with rubber particles of 1.0–2.0 mm increased from 76.6 to 86.5% by increasing the rubber content from 0.0 to 5.6%. The effects of rubber fine aggregate on concrete compressive strength during freeze–thaw cycles were quantified. On this basis, a forecast model for rubberized concrete compressive strength in freeze–thaw cycles was proposed, and the effects of the particle size, content, and pretreatment of the rubber particles were considered. The calculated results agreed well with the test results both in this study and the relevant peer studies, indicating that the model can provide a good reference for the design and engineering application of rubberized concrete in frigid environments.