ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Experimental and MCFT-Based Study on Steel Fiber-Reinforced Concrete Subjected to In-Plane Shear Forces

Author(s): Suyash K. Wagh, Agie Vianthi & Wen-Cheng Liao

Publication: IJCSM

Volume: 17

Issue:

Appears on pages(s):

Keywords: Steel fiber, Reinforced concrete, Panels, In-plane shear, Modified compression field theory, Shear behavior

DOI: 10.1186/s40069-023-00586-4

Date: 7/31/2023

Abstract:
Testing of concrete panels subjected to pure in-plane shear loading is necessary to elucidate the shear behavior of concrete. However, available data for predicting the shear capacity and behavior of steel fiber-reinforced concrete are rather limited. This study aims to evaluate the shear capacity and behavior of fiber-reinforced concrete made of highly flowable strain hardening fiber-reinforced concrete (HF-SHFRC) experimentally and analytically, respectively, using a panel tester loaded under pure shear and modified compression field theory (MCFT). The test was conducted using a panel test machine at the University of Toronto. The test results of the HF-SHFRC demonstrated strain hardening behavior at tension after the first crack, as indicated by the increase in the shear stress after the first crack in the HF-SHFRC panel. An analysis procedure is proposed for predicting the shear strength of steel fiber-reinforced concrete (SFRC) based on experimental data of the SFRC panels to obtain reliable results. A comparison of results obtained from the proposed analysis procedure and experiments show that it accurately predicted the response of the HF-SHFRC. The proposed MCFT-based analysis procedure can provide valuable insight for understanding the behavior of the SFRC panels under shear loading.