• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Three-Dimensional-Printed Engineered, Strain-Hardening Geopolymer Composite as Permanent Formwork for Construction of Reinforced Concrete Beam

Author(s): Shin Hau Bong, Behzad Nematollahi, Viktor Mechtcherine, Victor C. Li, and Kamal H. Khayat

Publication: Structural Journal

Volume: 121

Issue: 2

Appears on pages(s): 37-48

Keywords: engineered geopolymer composite (EGC); permanent formwork; reinforced concrete beam; strain hardening; three-dimensional (3-D) concrete printing

DOI: 10.14359/51739159

Date: 3/1/2024

Extrusion-based concrete printing technology allows the fabrication of permanent formwork with intricate shapes, into which fresh concrete is cast to build structural members with complex geometries. This significantly enhances the geometric freedom of concrete structures without the use of expensive temporary formwork. In addition, with proper material choice for the permanent formwork, the load-bearing capacity and durability of the resulting structure can be improved. This paper investigates the concrete printing of permanent formwork for reinforced concrete (RC) beam construction. A three-dimensional (3-D)-printable engineered geopolymer composite or strain-hardening geopolymer composite (3DP-EGC or 3DP-SHGC), recently developed by the authors, was used to fabricate the permanent formwork. The 3DP-EGC exhibits strainhardening behavior under direct tension. Two different printing patterns were used for the soffit of the permanent formwork to investigate the effect of this parameter on the flexural performance of RC beams. A conventionally mold-cast RC beam was also prepared as the control beam for comparison purposes. The results showed that the RC beams constructed using the 3DP-EGC permanent formwork exhibited superior flexural performance to the control beam. Such beams yielded significantly higher cracking load (up to 43%), deflection at ultimate load (up to 60%), ductility index (50%), and absorbed energy (up to 107%) than those of the control beam. The ultimate load was comparable with or slightly higher than that of the control beam. Furthermore, the printing pattern at the soffit of the permanent formwork was found to significantly influence the flexural performance of the RC beams.