• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Effect of Corrosion on Bond Strength and Development Length of Reinforcing Bar in Epoxy-Grouted Nut Coupler

Author(s): Naseeruddin Haris and Sangeeta Gadve

Publication: Materials Journal

Volume: 119

Issue: 5

Appears on pages(s): 239-250

Keywords: corrosion; coupler bond strength; development length; epoxy; impressed current; nut coupler; pullout test; reinforcing bar

DOI: 10.14359/51735977

Date: 9/1/2022

Corrosion of steel reinforcing bars in reinforced concrete (RC) structures is a matter of concern among practicing engineers and researchers are perpetually working over it. The development length of reinforcing bars at joints of RC structural frames are more prone to severe corrosion. Due to this, the design stress that needs to be developed in reinforcing bars is largely reduced. In addition, the development lengths of reinforcing bars create congestion at frame joints. This paper is an attempt to overcome these issues. In this paper, an epoxy-grouted nut coupler system is proposed that generates the required design stress in reinforcing bars with a very short development length at end anchorages, due to which congestion of the reinforcing bar at the joints can be avoided. The experimental investigation on the effect of corrosion on bond strength and development length of reinforcing bar in this epoxy-grouted nut coupler is also carried out by performing pullout tests. Statistical models are developed to predict the bond strength between the coupler and reinforcing bar corroded to different levels. This epoxy-grouted nut coupler is an effective tool for developing required stress in reinforcing bars by reducing the actual development length of reinforcing bars in the case of new structures. It is also useful and convenient in regeneration of stress in reinforcing bars at end anchorages that has been lost in corrosion-damaged structures.