ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Nano-Modified Concrete Cast and Cured at Freezing Temperature

Author(s): A. M. Yasien, A. Abayou, and M. T. Bassuoni

Publication: Symposium Paper

Volume: 335

Issue:

Appears on pages(s): 112-127

Keywords: Nano-silica, fly ash, concrete, cold weather, antifreeze admixtures

Date: 9/20/2019

Abstract:
In cold regions, freezing temperatures limit the construction season to few months, usually between May and September. The use of nanoparticles, which have high specific surface and vigorous reactivity, may potentially enhance the performance of concrete placed at low temperatures. Therefore, this study focused on developing concrete mixtures incorporating nano-silica which were mixed, placed and cured at -5°C (23°F) without any insulation or protection targeting field applications in late fall and early spring periods. Eight mixtures incorporating general use (GU) cement, fly ash (up to 25%), and nano-silica (up to 4%) were tested for this purpose, with water-to-binder ratios of 0.32 and 0.4. All mixtures contained a combination of calcium nitrate and calcium nitrite as an antifreeze admixture. Testing involved concrete setting time (placement), 7 and 28 days compressive strengths (hardened properties) and resistance to freezing-thawing cycles (durability). Moreover, mercury intrusion porosimetry, thermal analysis and scanning electron microscopy were performed to corroborate the trends from the macro-scale tests. It was found that nano-silica significantly improved the overall performance of concrete placed and cured at -5°C (23°F), which implicates its promising use for construction applications under low temperatures.




  

Please enter this 5 digit unlock code on the web page.