Agenda
ACI 544 Main Committee Meeting, Fiber Reinforced Concrete
Spring Convention 2015, Kansas City, MO
Tuesday, April 15th, 3:00 PM - 5:30 PM M-BASIE A

1. Call to order and approval of agenda
2. Introductions
3. Approval of previous minutes (ACI Fall Convention, Washington, DC, 2014)
4. Remarks from the Chair / Secretary
5. Announcements
 upcoming and recent events. Please provide announcements electronically to committee secretary so it can
 be included in the minutes of the meeting.
6. Report from the membership secretary (MacDonald)
 Results of recent membership survey, subcommittee assignments, voting and activity records. (10 minutes)
7. Subcommittee reports
 □ 544-SC FRC- Steering committee (Mobasher)
 □ 544-A&B FRC-Education, Production & Applications (MacDonald)
 a) Status plan: 544.1R-96
 b) Nomenclature Document
 □ 544-C FRC-testing (Ferrara)
 a) Status of the Testing Document, progress on recent ballots
 b) Status plan on remaining sections addressing removal of 544.2R-89
 □ 544-D FRC- Structural uses (Mobasher)
 a) Progress report on TAC interactions regarding Elevated Slabs,
 b) Status plan 544-4R new Design Document, Lead author: A; Bonakdar
 c) ETR report on FRC Segmental Tunnel Lining, Ballot results, Lead Author: M. Bakhsh
 □ 544-E FRC- Mechanical Properties (Krstulovic)
 a) Progress report on TAC interactions regarding Backcalculation Document,
 □ 544-F FRC-durability (Aldea)
 a) Technotes under Ballot
 1) “Use of Fibers for Reduction of Gas and Liquid Permeability in Concrete Structures”
 b) “Corrosion Resistance of FRC” Aldea Ekenel,
8. Liaison reports
 • ACI 360 Michael McPhee
 • ACI 506 Jeff Novak
 • ACI 440 Mahmut Ekenel,
 • ACI 701 Cliff MacDonald
 • ASTM C 09.42
 • ASTM C 27
 • ASTM C 17
 • RILEM
 • FIB TG8.6
 • FRCA Michael Mahoney

9. Additional reports
ACI 239: UHPC
ACI 350-B: Document on the use of fibers in hot weather concrete
ACI 360:
ACI 440:
ACI 506: Novak
ASTM C 09.42 on FRC:
10. Other business / presentations / informal discussion of projects
11. Adjournment

Schedule of Committee Related Activities during the meeting:

<table>
<thead>
<tr>
<th>Activity Code</th>
<th>Activity Description</th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>544</td>
<td>Fiber-Reinforced Concrete</td>
<td>Tuesday</td>
<td>3:00 PM - 5:30 PM</td>
<td>M-BASIE A</td>
</tr>
<tr>
<td>544-A</td>
<td>FRC-Production & Applications</td>
<td>Monday</td>
<td>10:00 AM - 1:00 PM</td>
<td>C-2105</td>
</tr>
<tr>
<td>544-C</td>
<td>FRC-Testing</td>
<td>Tuesday</td>
<td>1:30 PM - 3:00 PM</td>
<td>M-BASIE A</td>
</tr>
<tr>
<td>544-D</td>
<td>FRC-Structural Uses</td>
<td>Tuesday</td>
<td>11:30 AM - 1:00 PM</td>
<td>M-JAY MCSHANN A</td>
</tr>
<tr>
<td>544-E</td>
<td>FRC-Mechanical Properties</td>
<td>Monday</td>
<td>5:00 PM - 6:30 PM</td>
<td>M-ANDY KIRK B</td>
</tr>
<tr>
<td>544-F</td>
<td>FRC-Durability</td>
<td>Tuesday</td>
<td>10:30 AM - 12:00 PM</td>
<td>C-2105</td>
</tr>
<tr>
<td>544-SC</td>
<td>FRC-Steering Committee</td>
<td>Monday</td>
<td>8:30 AM - 10:00 AM</td>
<td>C-2102 B</td>
</tr>
</tbody>
</table>

The existing conflicts that we have been made aware of are: 544-E, FRC-Mechanical Properties, Monday, 5:00 PM - 6:30 PM with ACI 506B
Sessions Sponsored By ACI 544 in Addressing International Cooperation

Moderator: Barzin Mobasher,
The use of fiber reinforced concrete (FRC) and ultrahigh performance fiber reinforced concrete (UHPFRC) for designing structural members in bending and shear has recently developed significant attention. For example, FRC has been used structurally in several building and bridge projects worldwide. Alternative design procedures have been addressed in the fib Model Code 2010 as well as ACI 544 documents. Members of ACI Committee 544, fib TG8.3, the Japan Concrete Institute, and other associations have been involved in code development and design of FRC structural members. The aim of this session is to bring together researchers that collaborate with ACI and fib together to further proceed with the developmental collaborations of the two organizations. The state of the art on the recent design guides as well as code specification and applications of FRC structures in beams, elevated floors, tunnel linings, slabs, pavements, precast elements, bridges, and other applications are addressed.

By attending this session, attendees will be able to:
1. Understand the sustainability benefits of designing with FRC, economical sections, and lighter weight sections;
2. Understand the role of material mechanical properties in design with FRC;
3. Understand design guides which correlate with the durability, serviceability, and ductility criteria; and
4. Understand designing for durability using maximum crack width or maximum curvature as an integral set of specifications.

These sessions that primarily deal with Design with FRC is included in ACI Spring 2014 program for the Kansas City, MO Convention. All the time for the sessions have been scheduled according to the following list:

Please feel free to pass this along to your colleagues and other conference attendees.

http://www.concrete.org/events/conventions/currentconvention/sessionsandevents.aspx?m=detail&ProgramDate=04/12/2015%20%20#S00006313

Abstracts are Available at:

Session 1

Session 2

Session 3
http://www.concrete.org/events/conventions/currentconvention/sessionsandevents.aspx?m=pschedule&EventId=ZSESS18
<table>
<thead>
<tr>
<th>Part</th>
<th>#</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Marco di Prisco</td>
<td>Fibre Reinforced Concrete for elevated slabs: searching an optimized solution</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Joaquim A. O. Barros</td>
<td>Design of Steel Fibre Reinforced Self-Compacting Concrete in Elevated Slabs</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>Gregor Fischer</td>
<td>Modeling the load-deformation response of FRC members using the principle of work balance</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>Jeff Novak</td>
<td>Implementing Steel Fiber Reinforced Concrete Structural Engineering – A Company Perspective</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>Amir Bonakdar</td>
<td>Design guide and Specifications for Fiber Reinforced Concrete Slabs on Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Barzin Mobasher</td>
<td>Structural Design with FRC based on Serviceability, Curvature, or Crack Width criteria</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fausto Minelli</td>
<td>Reinforcement optimization or FRC structural elements</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Emilio Garcia Taengua</td>
<td>The Effect of Steel Fibers on Bond Capacity of Concrete</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Hassan Aoude</td>
<td>Blast response of fiber reinforced concrete structural members tested under shock-tube loading</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Mehdi Bakhshi</td>
<td>Design of Precast Fiber Reinforced Tunnel Segments</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Yiming Yao</td>
<td>Modeling of Crack width in the Design of Fiber Reinforced Concrete Slabs</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Salah Altoubat</td>
<td>Shear Strength of Macro Synthetic Fiber Reinforced Concrete Beams: Assessment and Applicability of Existing SFRC Models</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Anil Patnaik</td>
<td>Reducing Crack Widths of Structural Slab Bridge Decks by Using Fiber Reinforced Concrete</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Janis Kamars</td>
<td>The suspended pile supported industrial slab of “Tingstad Paper” (Sweden) of steel fiber reinforced concrete with zero shrinkage: Full scale test results and structural design approach.</td>
</tr>
</tbody>
</table>

Setup: Theater Seating for 90+