Monday Agenda

1) Welcome and Introductions

2) Approval of Fall 2010 minutes

3) Sustainability Sessions
 a) Sessions at this conference (Rowland)
 i) ACI & the Concrete Industry’s Approach to Green Building
 Wednesday, 9am-12pm, M-Meeting Room 4 (moderator: Larry Rowland)
 ii) Performance-Based Requirements for Concrete and Sustainability, Part 1
 Monday, 2-5pm, M-Meeting Room 1 (moderator: Ken Rear)
 iii) Performance-Based Requirements for Concrete and Sustainability, Part 1
 Tuesday, 9am-12pm, M-Meeting Room 1 (moderator: Mark Chrzanowski)
 iv) Contractor’s Day Lunch, Engineering the World’s Tallest Structure
 Tuesday, 12-2pm, M-Salon 6 (speaker: Larry Novak)
 b) Upcoming Sessions (Rowland)
 i) Applications and Modeling Thermal Mass for Sustainable Buildings (Cincinnati)
 c) Topics for future conventions
 i) Fall 2011, Cincinnati, Ohio (Bridging Theory and Practice)
 ii) Spring 2012, Dallas, Texas (The Art of Concrete)
 iii) Fall 2012, Toronto, Ontario (Forming our Future)
 d) Fall Sustainability Forum (Buffenbarger, Sakai)

4) Roster update

5) Special Publication from Pittsburgh session – update (Volz)

6) CAM Sustainability Publications and corresponding e-learning courses
 a) The Sustainable Concrete Guide – Strategies and Examples
 b) The Sustainable Concrete Guide – Applications

7) Outreach to ACI committees

8) JCI International Conference on Concrete Sustainability, 2013 (Sakai)

9) First ACI Concrete Sustainability Award (update on nominations)

10) ACI Staff update
 a) New ACI Director of Sustainability, Kevin Mlutkowski

11) Update on committee document, “Guide to Sustainable Concrete” (details during Tuesday meeting, see Exhibit A)
 a) Resolution of negatives, Chapters 4 & 5 (Kevin MacDonald & Matt Offenberg)

12) Adjournment of Monday meeting
Tuesday Agenda

1) Welcome and Introductions

2) Brief review of Monday meeting (Schokker)

3) Subcommittee Updates (focused on “Guide to Sustainable Concrete” progress and needs)
 a) 130A: Materials (Chairs: Doug Hooton & Tom VanDam)
 b) 130B: Production/Transportation/Construction (Chairs: Kevin MacDonald & Matt Offenberg)
 c) 130C: Structures in Service (Chair: Tracy Marcotte)
 d) 130D: Rating Systems/Sustainability Tools (Chairs: Jeff Volz, & Arezki Tagnit-Hamou)
 e) 130E: Design/Specifications/Codes/Regulations (Chairs: Mark Chrzanowski & Larry Church)
 f) 130F: Social Issues (Chair: David Darwin, Vice Chair: Kelsey Edwardsen)
 g) 130G: Education/Certification (Chairs: Larry Rowland & Khaled Awad)

4) Presentation by Carol Bowers, Sustainable Infrastructure Systems Development, ASCE

5) Completion of any remaining business from the Monday meeting

6) New Business
 a) Discussion of how to move toward “Sustainability Now”

7) Adjournment
GUIDE TO CONCRETE SUSTAINABILITY

Reported by ACI Committee 130

This report gives general information about concrete sustainability.....

Keywords: sustainability; green; environmental; ...

CONTENTS

Chapter 1—Introduction
 1.1—General
 1.2—Background
 1.2—Scope
 1.4—Limitations
 1.5—Background: Sustainability
 1.6—Sustainable attributes for concrete

Chapter 2—Materials
 2.1—Cementitious materials
 2.3—Aggregates and fillers
 2.4—Admixtures and additives
 2.5—Water
 2.6—Reinforcement

Chapter 3—Proportioning
 3.1—Mixture proportion considerations
 3.2—Overdesign implications

Chapter 4—Production and Transport
 4.1—Environmental best practices for production
 4.2—Transportation
 4.3—On site
 4.4—Innovative green products
 4.5—Industry resources and programs

Chapter 5—Construction
 5.1—Formwork
 5.2—Placement and post-placement
 5.3—Health and Safety

Chapter 6—Structures in Service
 6.1—Durability
 6.2—Asset management
 6.3—Historic preservation and cultural significance
6.4—Environmental impacts

Chapter 7—Rating Systems
7.1—Overview
7.2—Recommended criteria for evaluating sustainability of concrete
7.3—LEED (Leadership in Energy and Environmental Design)
7.4—Green Globes
7.5—BREEAM (Building Research Environmental Assessment Method)
7.6—CASBEE (Comprehensive Assessment System for Built Environmental Efficiency (CASBEE)
7.7—Green Roads
7.8—GreenLITES (Leadership in Transportation and Environmental Sustainability)
7.9—U.S. Cities and LEED
7.10—CHPs (Collaborative for High Performance Schools)

Chapter 8—Sustainability Tools
8.1—Overview
8.2—Recommended sustainability tools for evaluating concrete
8.3—Athena
8.4—BEES
8.5—Concrete center thermal mass calculator
8.6—EcoConcrete
8.7—EcoQuantum
8.8—Envest
8.9—WRI
8.10—Black boxes
8.11—Comparisons
8.12—Applications

Chapter 9—Design
9.1—What is sustainable design?
9.2—Sustainable design starts at the conceptual level
9.3—PCA high performance concrete
9.4—Durability
9.5—Service life
9.6—Improvements needed for adoption

Chapter 10—Specifications
10.1—Elements of a sustainable specification
10.2—Sample sustainable specifications
10.3—Specifics for ACI 301

Chapter 11—Codes
11.1—Sustainable practices by understanding code requirements
11.2—Green building codes
11.3—Durability codes
11.4—Specifics for ACI 318

Chapter 12—Regulations
12.1—Global
12.2—Federal

Chapter 13—Social impacts
13.1—Needs
13.2—Stakeholders
13.3—Health and safety
13.4—Aesthetics
13.5—Societal connectivity
13.6—Residential

Chapter 14—Environmental impacts
14.1—Local and global climate
14.2—Water
14.3—Durability and longevity
14.4—Energy

Chapter 15—Economic impacts
15.1—Overall metrics
15.2—Cost of maintenance
15.3—Economic assessment
15.4—Balance of trade

Chapter 16—Summary and Conclusions

Chapter 17—References