ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 10 Abstracts search results

Document: 

SP348

Date: 

March 19, 2021

Publication:

Symposium Papers

Volume:

348

Abstract:

Sponsors: Sponsored by ACI Committee 351 Editor: Carl A. Nelson This special publication grew out of the Technical Session entitled “Application of ACI 351-C Report on Dynamic Foundations,” held at the ACI Spring 2019 Convention in Québec City, Québec. Following this event, Committee 351 decided to undertake a special publication with contributions from those session participants willing to develop their presentations into full-length papers. Three papers included in the current publication were contributed by these presenters and their coauthors, with six additional papers provided by others. All but one of the papers deal with the subject matter of ACI 351.3—Foundations for Dynamic Equipment—updated in 2018. The one exception (the paper of Wang and Fang on wind turbine foundations) provides valuable information to engineers dealing with a lack of consistent design criteria among various codes for reinforced concrete foundations subjected to high-cycle fatigue loads. I would like to thank the members of ACI Committee 351 for their support, in particular the current main Committee and Subcommittee C Chairpersons Susan Isble and Dr. Mukti L. Das, respectively. I also wish to express my gratitude to the authors for their perseverance through the difficult circumstances of 2020, and to the reviewers who generously contributed their time and expertise to this publication. Last, but not least, I want to thank my wife Cindy for tolerating me (and the growing piles of paper) over the past several months as the deadline approached. Carl A. Nelson On behalf of ACI Committee 351 Minneapolis, December 2020

DOI:

10.14359/51732689


Document: 

SP-348_07

Date: 

March 1, 2021

Author(s):

Pericles C. Stivaros and Pablo A. Bruno

Publication:

Symposium Papers

Volume:

348

Abstract:

This paper presents a case study involving the structural analysis and design of an elevated foundation plinth to support multiple pieces of rotating machines with different operating weights and speeds. The equipment is used to operate a high-speed balancing testing facility for turbines and rotors that are located within an adjacent testing chamber. This project comprised of several layout and design challenges, including vibration and resonance concerns, effects of multiple operating frequencies, plinth shape, and pile foundation effects. Major concern was to maintain the high precision and strict tolerance limitations required by the high-speed balancing operations. Elevated machine foundations integral with other structures possess many natural frequencies, both locally and globally. The traditional design rules-of-thumb are not adequate for analyzing and designing elevated machine foundations. A computer-based finite element analysis method is required to identify the multiple natural frequencies of a complicated foundation structure. The strength design of a machine foundation can become very challenging when trying to implement code requirements that are mostly applicable to building elements and not to massive concrete foundations. This study recognizes the need for the development of a design standard to include special design requirements for mass concrete machine foundations.

DOI:

10.14359/51732682


Document: 

SP-348_05

Date: 

March 1, 2021

Author(s):

O.S. Ali Ahmed

Publication:

Symposium Papers

Volume:

348

Abstract:

Dynamic pile group effect can either increase or decrease the response of pile-supported structures. This paper presents the results of a three-dimensional finite element model of the pile-to-pile interaction that considers the effect of the surrounding soil to determine the dynamic stiffness and damping for vertical end bearing pile groups subjected to vertical harmonic loading. The results were generated for a wide range of the dimensionless frequency parameter (ao) for a 9x9-pile group with three different spacings: 2-, 4-, and 6-pile diameter. Both the stiffness and the damping showed an oscillatory behavior with the dimensionless frequency parameter ao, as well as with the soil shear modulus. Also, the group efficiency was determined as a function of the pile spacing and the soil shear modulus. The efficiency factor for the stiffness can be as high as 1.15 and as low as 0.7 and for the damping as high as 3.75 and as low as 0.4 as a function of the dimensionless frequency parameter ao.

DOI:

10.14359/51732680


Document: 

SP-348_01

Date: 

March 1, 2021

Author(s):

David L. Pederson, Anthony J. Baxter and Carl A. Nelson

Publication:

Symposium Papers

Volume:

348

Abstract:

This paper discusses steps for both computing vibration from equipment foundations using the elastic halfspace theory and then computing the decrease in vibration amplitude from the foundation to receivers. The steps are demonstrated on an existing foundation at a project site in Ohio that was subjected to dynamic loading from a hydraulic vehicle test rig. Several approaches are discussed to estimate the dynamic shear modulus of different soils, along with a methodology to establish an equivalent dynamic shear modulus for soils with varying shear wave velocities. Vibration transmission through the soil can affect people and sensitive equipment both near and far from the source. This paper shows a hybrid method and an SRSS method to compute the vibration attenuation through the near field and far field. The calculated results for this site were found to be very close to the measured values. Finally, vibration levels are compared for variations in stiffness, damping and attenuation to evaluate the sensitivity to calculations and/or field measurements. Variations in stiffness result in a nearly proportional change in vibration level while variations in damping and attenuation produce relatively small changes in the results.

DOI:

10.14359/51732676


Document: 

SP-348_09

Date: 

March 1, 2021

Author(s):

Xuan Wang and Shu-jin Fang

Publication:

Symposium Papers

Volume:

348

Abstract:

One of major challenges for the US wind industry is the lack of consistent fatigue design criteria. ASCE/AWEA RP2011 recommends several design codes for fatigue analysis of land-based wind turbine support structures. However, it does not provide discussions on the differences and limitations of these codes. The purpose of this paper is to present our findings on the application of fatigue design codes including Model Code 2010 (MC10), Eurocode 2 (EC2), Det Norske Veritas (DNV), and ACI 215. Comparison of the design results from using these codes/standards are summarized. Due to lack of consistency in the design standards, evaluation results may vary greatly, which can be confusing and inconclusive at times. In addition, this study shows that there will be significant differences on fatigue design adequacy depending on which analysis method is used: the average sectional method or finite element method, the two principal methods used to analyze fatigue. A number of suggestions and critical comments are also provided in this paper for helping development of more consistent fatigue analysis and design criteria for wind turbine foundations.

DOI:

10.14359/51732684


12

Results Per Page