International Concrete Abstracts Portal

Showing 1-5 of 20 Abstracts search results

Document: 

SP237

Date: 

October 11, 2006

Author(s):

Editors: Laura Lowes and Filip Filippou

Publication:

Symposium Papers

Volume:

237

Abstract:

SP-237CD This CD-ROM is a collection of 19 papers presented at a workshop sponsored by Joint ACI-ASCE Committee 447, Finite Element Analysis of Reinforced Concrete Structures, and JCI Committee 016SP, in Maui, Hawaii, USA, in November 2003. A broad range of topics was addressed, including the creation of new experimental data sets for use in developing, calibrating, and validating models; the development and validation of plain, reinforced, and fiber-reinforced concrete constitutive models; new approaches to simulating the response of reinforced concrete continua; new element formations to enable improved simulation of component response; and new computational techniques.

DOI:

10.14359/18184


Document: 

SP237-05

Date: 

August 1, 2006

Author(s):

S.J. Foster, Y.L. Voo, and K.T. Chong

Publication:

Symposium Papers

Volume:

237

Abstract:

A finite element model is developed for the analysis of fiber reinforced concrete plane stress members failing by mode I fracture. The constitutive law is built on the variable engagement model where the behavior of a fiber composite is obtained by integration of its parts (fibers and concrete matrix) over the cracked surface. In developing the model in this way the formulation is made generally applicable to any type of steel fiber-cement based matrix and to fiber cocktails with any combination of fibers in the mix in any ratios. The model is demonstrated for a reactive powder concrete girder failing in shear using local and non-local modeling. The finite element formulation is shown to be capable of modeling the girder, with good accuracy observed for the global load versus displacement history and is shown to correctly capture the localized shear failure mechanism.

DOI:

10.14359/18246


Document: 

SP237-04

Date: 

August 1, 2006

Author(s):

T. Higai, H. Nakamura, and S. Saito

Publication:

Symposium Papers

Volume:

237

Abstract:

After the Hanshin-Awaji earthquake, the volume of lateral reinforcement used in reinforced concrete structures in Japan was increased to improve seismic performance. Although a large volume of closely spaced lateral reinforcement will be effective in preventing elastic buckling of the longitudinal reinforcement, it will not prevent plastic buckling. Under severe earthquake loading, longitudinal reinforcement will be subjected to large reversed-cyclic deformation demands into the plastic regime in tension and the buckling regime in compression. The authors presented the results of low cycle fatigue testing of deformed bars and examination of failure criteria for these bars.

DOI:

10.14359/18244


Document: 

SP237-03

Date: 

August 1, 2006

Author(s):

K. Suzuki and A. Fujii

Publication:

Symposium Papers

Volume:

237

Abstract:

Two interior column (RC)-beam (PPC) specimens were tested. The specimens were first subjected to reversed, repeated cyclic loading to maximum rotational angles of 1/30 and 1/16, respectively. The specimens were then repaired using resin injection and mortar covering. Mechanical properties obtained following repair were almost the same as those obtained during the initial loading, probably, due to the confined concrete used in the beam ends. However, a reduction in initial stiffness of approximately 30% was observed.

DOI:

10.14359/18240


Document: 

SP237-02

Date: 

August 1, 2006

Author(s):

M. Terai and K. Minami

Publication:

Symposium Papers

Volume:

237

Abstract:

In most structural members, strength tends to decrease as the member size increases. This phenomenon is known as scale effect. Many experiments investigating the impact of scale effects on RC structures have already been conducted. However, since few laboratories have the capacity to test large-scale specimens, few experimental investigations have tested near full-scale RC members. This paper investigates the scale effect in reinforced concrete members subjected to shear loading. Two different sized test specimens were prepared and tested. The results clearly indicate that the member strength decreases as its size increases. The Japanese building code, an empirically-based code with no scale effect parameter in the shear formulas, generates overly-conservative predictions for full-scale members. Using plane concrete monotonic compression strength data, a formula defining the shear strength of reinforced concrete members is proposed. Experimental results show that the proposed formula for computing ultimate strength agrees better with the experimental data than existing formulas.

DOI:

10.14359/18237


1234

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer