In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Chat with Us Online Now
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Longtime Study of Concrete Durability in Sulfate Soils
Author(s): David Stark
Publication: Special Publication
Volume: 77
Issue:
Appears on pages(s): 21-40
Keywords: air entrainment; beams (supports); blast furnace slag ; cement factor; cement types; concrete durability; concretes; long-time study; permeability; pozzolans; shales; steam curing; sulfate soils; tricalcium aluminates; water cement ratio. --
Date: 10/1/1982
Abstract:Eleven year performance data are presented for concrete beams stored in sulfate bearing soil in Sacramento, California. Concrete variables include ASTM cement type, cement factor, air entrainment, pozzolanic replacements for cement, portland blast-furnace slag cement, and steam curing. Results reaffirm the importance of cement type, that is, the tricalcium aluminate content of the cement and, more significantly, cement factor with attendant change in water-cement ratio on resistance to sulfate attack. In this study, the use of 40% replacements of cement by high alumina granulated blast-furnace slags had a generally detrimental effect on concrete durability. Twenty percent fly ash replacements were beneficial in the leaner mixes but generally of little or no value in the richer mixes. Forty percent fly ash replacements were generally detrimental to sulfate resistance, particularly where Types II and V cement were used in richer mixes. Calcined Monterey shale showed similar trends but with a greater dropoff in durability in the richer mixes. Air entrainment and steam curing were beneficial to varying degrees.
Click here to become an online Journal subscriber