In-Place Strength of High-Performance Concretes


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: In-Place Strength of High-Performance Concretes

Author(s): F. Michael Bartlett and James G. MacGregor

Publication: Special Publication

Volume: 167


Appears on pages(s): 211-228

Keywords: Compressive strength; concrete cores; evaluation; fly ash; high-strength concretes; silica fume; slags; temperature.

Date: 3/1/1997

The ratio between the in-place compressive strength of high performance concretes and the strength of standard 28-day cylinders is investigated. Strength data for 771 cores from 3 1 large elements cast using 22 concrete mixes reported in five investigations by others are analysed. It is observed that the ratio of in-place strength to standard cylinder strength decreases as the maximum temperature sustained during hydration increases. If the concrete mix contains silica fume, Class C fly ash, or slag, the ratio of the in-place strength at 28 days to the standard 28-day cylinder strength of the same concrete is markedly less than that observed for concretes which do not contain supplementary cementitious materials. In all elements investigated, the average in-place strength continued to increase after 28 days. The relative strength gain of silica fume concretes after 28 days was significantly less than that of conventional concretes.