In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Early-Age Shear Strength of Reinforced Concrete Beams
Author(s): S.P. Shah, R.A. Miller, and T.E. Virding
Publication: Special Publication
Volume: 95
Issue:
Appears on pages(s): 71-92
Keywords: age-strength relation; beams (supports); ductility; flexural strength; shear strength; stirrups.
Date: 10/1/1986
Abstract:A study was conducted to determine if the current design formulas can adequately predict the capacity of reinforced concrete beams tested at early ages and to determine the effectiveness of stirrups in young beams. Three sets of reinforced concrete beams were tested-with the main variables being beam age and stirrup spacing. It was found that the ACI-318 ultimate strength design method provides a lower bound to flexural strength of young reinforced concrete beams. For beams failing in shear, however. the current code provisions appear unsatisfactory. For example,the contribution of shear reinforcement was observed to be less than that predicted by the code when beams failed in shear at early ages. A change in mode of failure was often observed at early ages and the ductility of young reinforced concrete beams , was less than that for the 28 day old beams.
Click here to become an online Journal subscriber