In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Setting Accelerator Calcium Nitrate Fundamentals, Performance and Applications
Author(s): Harald Justnes and Erik C. Nygaard
Publication: Special Publication
Volume: 171
Issue:
Appears on pages(s): 325-338
Keywords: Accelerating agents; admixtures; cement types; compressive strength; setting (hardening); temperature.
Date: 8/1/1997
Abstract:The effectiveness of calcium hitrate (CN) as a setting accelerator for cement is dependent on the cement type. The reason for this is explained by the mechanisms for set acceleration, and parametres for predicting the set accelerating efficiency of CN from cement characteristics is pointed out. Performance characteristics such as temperature evolution profile in insulated concrete (i.e. semi-adiabatic) and early compressive strengths (from 8 h) of concretes cured at 20°C for different additiom of different soluble calcium salts are demonstrated. The accelerating effect of CN was compared to additions of both calcium acetate and fortnate on equimolar concentrations of Ca2+ Calcium acetate and formate gave about the same accelerating effect, while CN showed greater acceleration. The difference might be due to an increased content of free Ca2+ (i.e. hot complexed ion) in CN compared with the organic acid salts. The temperature profiles revealed that CN accelerates set and hot the rate of early strength development. However, the 8 h compressive strength was increased when CN was added due to parallel displacement of the temperature evolution curves towards earlier times. Examples are given for field use (e.g. regulating slip forming rates) and potential applications (e.g. element production) of CN in concrete.
Click here to become an online Journal subscriber