In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Carbonation Curing of Cement Bonded Fiberboard Made by Slurry-Dewatering Process
Author(s): Y. Shao and S. Wang
Publication: Special Publication
Volume: 260
Issue:
Appears on pages(s): 125-138
Keywords: carbon uptake; carbonation curing; cellulose fiberboard; very early strength
Date: 6/1/2009
Abstract:Carbonation curing of cellulose fiberboard made by slurry-dewatering process was studied to examine their CO2 uptake capability, immediate carbonation strength and long term strength after subsequent hydration. Influencing parameters on CO2 uptake and strength gain were discussed. They included compact forming pressure, drying time, drying temperature, carbonation duration, fiber/cement ratio and water/cement ratio. It was found that cement bonded cellulose fiberboards had excellent carbonation capacity. The percent carbon uptake ranged from 13.5 % to 23.6%, based on cement content and process conditions. High degree of carbonation significantly improved early age strength and had no detrimental effect on the subsequent hydration strength. To promote more CO2 uptake and higher strength gain, carbonation rate should be controlled. This can be achieved through system optimization. Carbonation curing has shown the potential to replace traditional autoclaving and gain technical, economical and environmental benefits.
Click here to become an online Journal subscriber