Transition between Shear and Punching in Reinforced Concrete Slabs: Review and Predictions with ACI Code Expressions

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Transition between Shear and Punching in Reinforced Concrete Slabs: Review and Predictions with ACI Code Expressions

Author(s): Alex M. D. de Sousa, Eva O. L. Lantsoght, and Mounir K. El Debs

Publication: Structural Journal

Volume: 120

Issue: 2

Appears on pages(s): 115-128

Keywords: one-way shear; one-way slabs; punching shear; slabs under concentrated loads; transitional shear failure modes

DOI: 10.14359/51738350

Date: 3/1/2023

Abstract:
One-way slabs under concentrated loads may fail by one-way shear, two-way shear, flexure, or a combination of these modes. This paper reviews shear and punching shear-failure mechanisms of one-way slabs under concentrated loads tested from the literature and investigates the accuracy of different approaches to predict the ultimate capacity for such slabs using the ACI code expressions. A database with 160 test results was evaluated. Shear and concentrated loads measured at failure were reviewed according to parameters such as the load position, slab width, and reinforcement ratios. The load position and slab width play a marked influence on the failure mechanism and tested loads. The analyses improved the understanding of the main parameters influencing the behavior of one-way slabs under concentrated loads. Finally, the proposed effective shear width expression enables accurate shear capacity predictions using the ACI code expressions.

Related References:

1. Lantsoght, E. O. L.; van der Veen, C.; de Boer, A.; and Walraven, J. C., “Transition from One-Way to Two-Way Shear in Slabs under Concentrated Loads,” Magazine of Concrete Research, V. 67, No. 17, 2015, pp. 909-922. doi: 10.1680/macr.14.00124

2. Lantsoght, E. O. L.; van der Veen, C.; and Walraven, J. C., “Shear in One-Way Slabs under Concentrated Load Close to Support,” ACI Structural Journal, V. 110, No. 2, Mar.-Apr. 2013, pp. 275-284.

3. Tenório, D. A.; Gomes, P. C. C.; Désir, J. M.; and Uchôa, E. L. M., “Analysis of Accidental Loads on Garage Floors,” Revista IBRACON de Estruturas e Materiais, V. 7, No. 4, 2014, pp. 560-571.

4. Bui, T. T.; Limam, A.; Nana, W.-S.-A.; Ferrier, E.; Bost, M.; and Bui, Q.-B., “Evaluation of One-Way Shear Behaviour of Reinforced Concrete Slabs: Experimental and Numerical Analysis,” European Journal of Environmental and Civil Engineering, V. 24, No. 2, 2020, pp. 190-216. doi: 10.1080/19648189.2017.1371646

5. Bui, T. T.; Abouri, S.; Limam, A.; Nana, W.-S.-A.; Tedoldi, B.; and Roure, T., “Experimental Investigation of Shear Strength of Full-Scale Concrete Slabs Subjected to Concentrated Loads in Nuclear Buildings,” Engineering Structures, V. 131, 2017, pp. 405-420. doi: 10.1016/j.engstruct.2016.10.045

6. de Sousa, A. M. D.; Lantsoght, E. O. L.; and El Debs, M. K., “One-Way Shear Strength of Wide Reinforced Concrete Members without Stirrups,” Structural Concrete, V. 22, No. 2, 2021, pp. 968-992. doi: 10.1002/suco.202000034

7. Reineck, K.-H.; Bentz, E. C.; Fitik, B.; Kuchma, D. A.; and Bayrak, O., “ACI-DAfStb Database of Shear Tests on Slender Reinforced Concrete Beams without Stirrups,” ACI Structural Journal, V. 110, No. 5, Sept.-Oct. 2013, pp. 867-876.

8. Muttoni, A., “Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement,” ACI Structural Journal, V. 105, No. 4, Juy-Aug. 2008, pp. 440-450.

9. Natário, F.; Fernández Ruiz, M.; and Muttoni, A., “Shear Strength of RC Slabs under Concentrated Loads Near Clamped Linear Supports,” Engineering Structures, V. 76, 2014, pp. 10-23. doi: 10.1016/j.engstruct.2014.06.036

10. Reißen, K., “Zum Querkrafttragverhalten von einachsig gespannten Stahlbe- tonplatten ohne Querkraftbewehrung unter Einzellasten,” PhD thesis, Faculty of Civil Engineering, RWTH Aachen University, Aachen, Germany, 2016.

11. Lantsoght, E. O. L.; van der Veen, C.; Walraven, J. C.; and de Boer, A., “Database of Wide Concrete Members Failing in Shear,” Magazine of Concrete Research, V. 67, No. 1, 2015, pp. 33-52. doi: 10.1680/macr.14.00137

12. NF EN, 1992, “Eurocode 2 - Calcul des structures en béton - Guide d’application des normes,” European Committee for Standardization, Brussels, Belgium, 2013.

13. Regan, P. E., “Shear Resistance of Concrete Slabs at Concentrated Loads Close to Supports,” Polytechnic of Central London, London, UK, 1982.

14. Lantsoght, E. O. L., “Shear in Reinforced Concrete Slabs under Concentrated Loads Close to Supports,” PhD thesis, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, 2013.

15. Reißen, K., and Hegger, J., “Database of Shear Tests on RC Slabs without Shear Reinforcement under Concentrated Loads – Assessment of Design Rules According to Eurocode 2,” 16th European Bridge Conference, Edinburgh, UK, 2015.

16. Sousa, A. M. D., and El Debs, M. K., “Shear Strength Analysis of Slabs without Transverse Reinforcement under Concentrated Loads According to ABNT NBR 6118:2014,” IBRACON Structures and Materials Journal, V. 12, No. 3, 2019, pp. 658-693. doi: 10.1590/s1983-41952019000300012

17. EN 1992-1-1:2005, “Eurocode 2: Design of Concrete Structures —Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2005.

18. Halvonik, J.; Vidaković, A.; and Vida, R., “Shear Capacity of Clamped Deck Slabs Subjected to a Concentrated Load,” Journal of Bridge Engineering, ASCE, V. 25, No. 7, 2020, p. 04020037. doi: 10.1061/(ASCE)BE.1943-5592.0001564

19. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 2019, 623 pp.

20. Mörsch, E., Der Eisenbetonbau [Concrete-Steel Construction], Engineering News Publishing, New York, 1909.

21. Walraven, J. C., “Fundamental Analysis of Aggregate Interlock,” Journal of the Structural Division, ASCE, V. 107, No. 11, 1981, pp. 2245-2270. doi: 10.1061/JSDEAG.0005820

22. Taylor, H. P., “Investigation of the Dowel Shear Forces Carried by the Tensile Steel in Reinforced Concrete Beams,” Tech Rept TRA 431, Cement and Concrete Association, London, UK, 1969, 24 pp.

23. Hordijk, D. A., “Tensile and Tensile Fatigue Behaviour of Concrete — Experiments, Modelling and Analyses,” Heron, V. 37, No. 1, 1992, pp. 3-79.

24. Kani, G. N. J., “The Riddle of Shear Failure and its Solution,” ACI Journal Proceedings, V. 61, No. 4, Apr. 1964, pp. 441-468.

25. Muttoni, A., and Ruiz, M. F., “Shear Strength of Members without Transverse Reinforcement as Function of Critical Shear Crack Width,” ACI Structural Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 163-172.

26. Muttoni, A., and Ruiz, M. F., “Shear in Slabs and Beams: Should They be Treated in the Same Way?” fib Bulletin, N°57, Fédération Internationale du Béton, Lausanne, Switzerland, 2010, pp. 105-128.

27. Marí, A.; Cladera, A.; Oller, E.; and Bairán, J. M., “A Punching Shear Mechanical Model for Reinforced Concrete Flat Slabs with and without Shear Reinforcement,” Engineering Structures, V. 166, 2018, pp. 413-426. doi: 10.1016/j.engstruct.2018.03.079

28. Cavagnis, F.; Fernández Ruiz, M.; and Muttoni, A., “A Mechanical Model for Failures in Shear of Members without Transverse Reinforcement Based on Development of a Critical Shear Crack,” Engineering Structures, V. 157, 2018, pp. 300-315. doi: 10.1016/j.engstruct.2017.12.004

29. Criswell, M. E., and Hawkins, N. W., “Shear Strength of Slabs: Basic Principle and Their Relation to Current Methods of Analysis,” Shear in Reinforced Concrete - Volume 1 and 2, American Concrete Institute, Farmington Hills, MI, 1974, pp. 641-676.

30. Hawkins, N. M., and Mitchell, D., “Progressive Collapse of Flat Plate Structures,” ACI Journal Proceedings, V. 76, No. 7, July 1979, pp. 775-808.

31. Menétrey, P., “Synthesis of Punching Failure in Reinforced Concrete,” Cement and Concrete Composites, V. 24, No. 6, 2002, pp. 497-507. doi: 10.1016/S0958-9465(01)00066-X

32. Yang, Y.; den Uijl, J.; and Walraven, J., “Critical Shear Displacement Theory: On the Way to Extending the Scope of Shear Design and Assessment for Members without Shear Reinforcement,” Structural Concrete, V. 17, No. 5, 2016, pp. 790-798. doi: 10.1002/suco.201500135

33. Doorgeest, J., “Transition Between One-way Shear and Punching Shear,” MS thesis, Delft University of Technology, Delft, the Netherlands, 2012.

34. Henze, L.; Rombach, G. A.; and Harter, M., “New Approach for Shear Design of Reinforced Concrete Slabs under Concentrated Loads Based on Tests and Statistical Analysis,” Engineering Structures, V. 219, 2020, p. 110795 doi: 10.1016/j.engstruct.2020.110795

35. Reißen, K.; Classen, M.; and Hegger, J., “Shear in Reinforced Concrete Slabs-Experimental Investigations in the Effective Shear Width of One-Way Slabs under Concentrated Loads and with Different Degrees of Rotational Restraint,” Structural Concrete, V. 19, No. 1, 2018, pp. 36-48. doi: 10.1002/suco.201700067

36. Lantsoght, E. O. L.; van der Veen, C.; de Boer, A.; and Walraven, J. C., “Influence of Width on Shear Capacity of Reinforced Concrete Members,” ACI Structural Journal, V. 111, No. 6, Nov.-Dec. 2014, pp. 1441-1449. doi: 10.14359/51687107

37. de Sousa, A.; Lantsoght, E.; Setiawan, A.; and El Debs, M. K., “Transition from One-Way to Two-Way Shear by Coupling LEFEA and the CSCT Models,” Proceedings of the fib Symposium 2021, Concrete Structures: New Trends for Eco-Efficiency and Performance, 2021.

38. Henze, L., “Querkrafttragverhalten von Stahlbeton-Fahrbahnplatten,” PhD thesis, Institute for Concrete Structures, Technische Universität Hamburg, Hamburg, Germany, 2019.

39. Sagaseta, J., and Vollum, R. L., “Influence of Aggregate Fracture on Shear Transfer through Cracks in Reinforced Concrete,” Magazine of Concrete Research, V. 63, No. 2, 2011, pp. 119-137. doi: 10.1680/macr.9.00191

40. Sagaseta, J.; Tassinari, L.; Fernández Ruiz, M.; and Muttoni, A., “Punching of Flat Slabs Supported on Rectangular Columns,” Engineering Structures, V. 77, 2014, pp. 17-33. doi: 10.1016/j.engstruct.2014.07.007

41. Natário, F., “Static and Fatigue Shear Strength of Reinforced Concrete Slabs Under Concentrated Loads Near Linear Support,” PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2015.

42. de Sousa, A. M. D.; Lantsoght, E. O. L.; and El Debs, M. K., “Databases of One-Way Slabs under Concentrated Loads: Parameter Analyses and Validation of the Proposed Approach,” 2022, https://zenodo.org/record/5911469. (last accessed Jan. 20, 2023)

43. Rombach, G., and Henze, L., “Querkrafttragfähigkeit von Stahlbetonplatten ohne Querkraftbewehrung unter konzentrierten Einzellasten,” Beton- und Stahlbetonbau, V. 112, No. 9, 2017, pp. 568-578. doi: 10.1002/best.201700040

44. Cullington, D. W.; Daly, A. F.; and Hill, M. E., “Assessment of Reinforced Concrete Bridges: Collapse Tests on Thurloxton Underpass,” Bridge Management, V. 3, 1996, pp. 667-674.

45. Ferreira, M. P., “Experimental Analysis of One-Way Reinforced Concrete Flat Slabs in Axis or Non-Axis-Symmetric Punching Shear,” doctoral thesis, Universidade Federal do Pará, Belém, Brazil, 2006.

46. Regan, P. E., and Rezai-Jorabi, H., “Shear Resistance of One-Way Slabs Under Concentrated Loads,” ACI Structural Journal, V. 85, No. 2, Mar.-Apr. 1988, pp. 150-157.

47. Damasceno, L. S. R., “Experimental Analysis of One-Way Reinforced Concrete Flat Slabs in Punching Shear with Rectangular Columns,” master’s dissertation, Departamento de Engenharia Civil, Universidade Federal do Pará, Belém, Brazil, 2007.

48. Belarbi, A.; Kuchma, D. A.; and Sanders, D. H., “Proposals for New One-Way Shear for the 318 Building Code,” Concrete International, V. 39, No. 9, Sept. 2017, pp. 29-32.

49. Kuchma, D. A.; Wei, S.; Sanders, D. H.; Belarbi, A.; and Novak, L. C., “Development of One-Way Shear Design Provisions of ACI 318-19 for Reinforced Concrete,” ACI Structural Journal, V. 116, No. 4, July 2019, pp. 285-295. doi: 10.14359/51716739

50. Lantsoght, E. O. L.; van der Veen, C.; Walraven, J.; and de Boer, A., “Experimental Investigation on Shear Capacity of Reinforced Concrete Slabs with Plain Bars and Slabs on Elastomeric Bearings,” Engineering Structures, V. 103, 2015, pp. 1-14. doi: 10.1016/j.engstruct.2015.08.028

51. Widianto; Bayrak, O.; and Jirsa, J. O., “Two-Way Shear Strength of Slab-Column Connections: Reexamination of ACI 318 Provisions,” ACI Structural Journal, V. 106, No. 2, Mar.-Apr. 2009, pp. 160-170.

52. Regan, P. E., “Shear Resistance of Members without Shear Reinforcement,” Proposal for CEB Model Code, V. MC90, 1987, pp. 1-28.

53. fib, “fib Model Code for Concrete Structures 2010,” V. 1-2, fédération internationale du béton, Lausanne, Switzerland, 2012.

54. de Sousa, A. M. D.; Lantsoght, E. O. L.; Yang, Y.; and El Debs, M. K., “Extended CSDT Model for Shear Capacity Assessments of Bridge Deck Slabs,” Engineering Structures, V. 234, 2021, p. 111897 doi: 10.1016/j.engstruct.2021.111897

55. Lantsoght, E. O. L.; van der Veen, C.; de Boer, A.; and Alexander, S. D. B., “Bridging the Gap between One-Way and Two-Way Shear in Slabs,” ACI-fib International Symposium: Punching Shear of Structural Concrete Slabs, SP-315, American Concrete Institute, Farmington Hills, MI, 2017, pp. 187-214.

56. Vaz Rodrigues, R.; Fernández Ruiz, M.; and Muttoni, A., “Shear Strength of R/C Bridge Cantilever Slabs,” Engineering Structures, V. 30, No. 11, 2008, pp. 3024-3033. doi: 10.1016/j.engstruct.2008.04.017


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer