ASTM C618 Fly Ash Specification: Comparison with Other Specifications, Shortcomings, and Solutions

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: ASTM C618 Fly Ash Specification: Comparison with Other Specifications, Shortcomings, and Solutions

Author(s): Prannoy Suraneni, Lisa Burris, Christopher R. Shearer, and R. Douglas Hooton

Publication: Materials Journal

Volume: 118

Issue: 1

Appears on pages(s): 157-167

Keywords: fly ash; loss on ignition; specifications; standards; strength activity index

DOI: 10.14359/51725994

Date: 1/1/2021

Abstract:
ASTM C618 and AASHTO M 295 specifications for fly ash represent the primary documents used by U.S. state and federal agencies to determine the suitability of a fly ash source for use in concrete. Other countries have broadly similar specifications for fly ash. The article compares specifications from the United States, Canada, Europe, Australia, and New Zealand, noting similarities and differences. Despite its common use, several criticisms of the ASTM C618 specification exist and are discussed in this document. Specifically, concerns exist regarding its dependence on strength activity index testing for determination of fly ash reactivity and strength generation potential, and loss on ignition for quantification of unburnt carbon content, as these tests relate somewhat poorly to performance of the fly ash in concrete. Recently developed test methods that could improve some of the most problematic components of the ASTM C618 specification are discussed.

Related References:

1. Adams, T. H., “American Coal Ash Association Production and Use News Release,” American Coal Ash Association, Farmington Hills, MI, 2017, pp. 1-4.

2. Rajabipour, F.; Zahedi, M.; and Kaladharan, G., “Evaluating the Performance and Feasibility of Using Recovered Fly Ash and Fluidized Bed Combustion (FBC) Fly Ash as Concrete Pozzolan,” ACI Concrete Research Council, Final Report, 2020, 111 pp.

3. Yao, Z.T., et al., “A Comprehensive Review on the Applications of Coal Fly Ash,” Earth-Science Reviews, V. 141, 2015, 2015, pp. 105-121. https://doi.org/10.1016/j.earscirev.2014.11.01610.1016/j.earscirev.2014.11.016

4. Durdziński, P. T.; Dunant, C. F.; Haha, M. B.; and Scrivener, K., “A New Quantification Method Based on SEM-EDS to Assess Fly Ash Composition and Study the Reaction of its Individual Components in Hydrating Cement Paste,” Cement and Concrete Research, V. 73, 2015, pp. 111-122. doi: 10.1016/j.cemconres.2015.02.008

5. Hemalatha, T., and Ramaswamy, A., “A Review on Fly Ash Characteristics – Towards Promoting High Volume Utilization in Developing Sustainable Concrete,” Journal of Cleaner Production, V. 147, 2017, pp. 546-559. doi: 10.1016/j.jclepro.2017.01.114

6. Thomas, M. D. A., “Optimizing the Use of Fly Ash in Concrete,” Report V. 5420, Portland Cement Association, Skokie, IL, 2007.

7. Chesner, W. H.; Collins, R. J.; and MacKay, M. H., “User Guidelines for Waste and Byproduct Materials in Pavement Construction,” Report FHWA-RD-97-148, Federal Highway Administration, Washington, DC, 1998, 683 pp.

8. Kucharczyk, S.; Zajac, M.; Stabler, C.; Thomsen, R. M.; Ben Haha, M.; Skibsted, J.; and Deja, J., “Structure and Reactivity of Synthetic CaO-Al2O3-SiO2 Glasses,” Cement and Concrete Research, V. 120, 2019, pp. 77-91. doi: 10.1016/j.cemconres.2019.03.004

9. Chancey, R. T.; Stutzman, P.; Juenger, M. C. G.; and Fowler, D. W., “Comprehensive Phase Characterization of Crystalline and Amorphous Phases of a Class F Fly Ash,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 146-156. doi: 10.1016/j.cemconres.2009.08.029

10. Kim, T.; Davis, J. M.; Ley, M. T.; Kang, S.; and Amrollahi, P., “Fly Ash Particle Characterization for Predicting Concrete Compressive Strength,” Construction and Building Materials, V. 165, 2018, pp. 560-571. doi: 10.1016/j.conbuildmat.2018.01.059

11. Moghaddam, F.; Sirivivatnanon, V.; and Vessalas, K., “The Effect of Fly Ash Fineness on Heat of Hydration, Microstructure, Flow and Compressive Strength of Blended Cement Pastes,” Case Studies in Construction Materials, V. 10, 2019, p. e00218 doi: 10.1016/j.cscm.2019.e00218

12. Sutter, L. L.; Vruno, D. M.; Anzalone, G. C.; and Dong, J., “Laboratory Study for Comparison of Class C Fly Ash Versus Class F Fly Ash for Concrete Pavement,” Report WHRP 0092-12-04, Wisconsin Department of Transportation, Madison, WI, 2014, 154 pp.

13. Ramanathan, S.; Kasaniya, M.; Tuen, M.; Thomas, M. D. A.; and Suraneni, P., “Linking Reactivity Test Outputs to Properties of Cementitious Pastes made with Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 114, 2020, p. 103742 doi: 10.1016/j.cemconcomp.2020.103742

14. Glosser, D.; Choudhary, A.; Isgor, O. B.; and Weiss, W. J., “Investigation of Reactivity of Fly Ash and its Effect on Mixture Properties,” ACI Materials Journal, V. 116, No. 4, July 2019, pp. 193-200. doi: 10.14359/51716722

15. Niemuth, M.; Barcelo, L.; and Weiss, J., “Effect of Fly Ash on Optimum Sulfate Levels Measured Using Heat and Strength at Early Ages,” Advances in Civil Engineering Materials, V. 1, No. 1, 2012, pp. 1-18. doi: 10.1520/ACEM20120012

16. Shehata, M. H., and Thomas, M. D. A., “The Effect of Fly Ash Composition on the Expansion of Concrete Due to Alkali–Silica Reaction,” Cement and Concrete Research, V. 30, No. 7, 2000, pp. 1063-1072. doi: 10.1016/S0008-8846(00)00283-0

17. Tikalsky, P. J., and Carrasquillo, R. L., “Influence of Fly Ash on the Sulfate Resistance of Concrete,” ACI Materials Journal, V. 89, No. 1, Jan.-Feb. 1993, pp. 69-75.

18. Cheriaf, M.; Rocha, J. C.; and Péra, J., “Pozzolanic Properties of Pulverized Coal Combustion Bottom Ash,” Cement and Concrete Research, V. 29, No. 9, 1999, pp. 1387-1391. doi: 10.1016/S0008-8846(99)00098-8

19. Mardon, S. M., and Hower, J. C., “Impact of Coal Properties on Coal Combustion By-Product Quality: Examples From a Kentucky Power Plant,” International Journal of Coal Geology, V. 59, No. 3-4, 2004, pp. 153-169. doi: 10.1016/j.coal.2004.01.004

20. Mastalerz, M.; Hower, J. C.; Drobniak, A.; Mardon, S. M.; and Lis, G., “From in-situ Coal to Fly Ash: A Study of Coal Mines and Power Plants From Indiana,” International Journal of Coal Geology, V. 59, No. 3-4, 2004, pp. 171-192. doi: 10.1016/j.coal.2004.01.005

21. Hower, J. C.; Rathbone, R. F.; Robertson, J. D.; Peterson, G.; and Trimblea, A. S., “Petrology, Mineralogy, and Chemistry of Magnetically-Separated Sized Fly Ash,” Fuel, V. 78, No. 2, 1999, pp. 197-203. doi: 10.1016/S0016-2361(98)00132-X

22. Ataie, F. F., and Riding, K. A., “Use of Bioethanol Byproduct for Supplementary Cementitious Material Production,” Construction and Building Materials, V. 51, 2014, pp. 89-96. doi: 10.1016/j.conbuildmat.2013.10.092

23. Shakouri, M.; Exstrom, C. L.; Ramanathan, S.; Suraneni, P.; and Vaux, J. S., “Pretreatment of Corn Stover Ash to Improve its Effectiveness as a Supplementary Cementitious Material in Concrete,” Cement and Concrete Composites, V. 112, 2020, p. 103658 doi: 10.1016/j.cemconcomp.2020.103658

24. Shi, C., “Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties,” Journal of Materials in Civil Engineering, ASCE, V. 16, No. 3, 2004, pp. 230-236. doi: 10.1061/(ASCE)0899-1561(2004)16:3(230)

25. Atiş, C. D., “Strength Properties of High-Volume Fly Ash Roller Compacted and Workable Concrete, and Influence Of Curing Condition,” Cement and Concrete Research, V. 35, No. 6, 2005, pp. 1112-1121. doi: 10.1016/j.cemconres.2004.07.037

26. Nagataki, S.; Sakai, E.; and Takeuchi, T., “The Fluidity of Fly Ash-Cement Paste with Superplasticizer,” Cement and Concrete Research, V. 14, No. 5, 1984, pp. 631-638. doi: 10.1016/0008-8846(84)90025-5

27. Spencer, W. C.; Loya, E. I. D.; Joshi, A.; and Minkara, R., “Statistical Analysis of Fly Ash Sampling Frequency,” Materials Performance and Characterization, V. 8, No. 1, 2019, pp. 41-50. doi: 10.1520/MPC20180067

28. Sanalkumar, K. U. A.; Lahoti, M.; and Yang, E.-H., “Investigating the Potential Reactivity of Fly Ash for Geopolymerization,” Construction and Building Materials, V. 225, 2019, pp. 283-291. doi: 10.1016/j.conbuildmat.2019.07.140

29. Ward, C. R., and French, D., “Determination of Glass Content and Estimation of Glass Composition in Fly Ash Using Quantitative X-Ray Diffractometry,” Fuel, V. 85, No. 16, 2006, pp. 2268-2277. doi: 10.1016/j.fuel.2005.12.026

30. Diaz-Loya, I.; Juenger, M.; Seraj, S.; and Minkara, R., “Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans,” Cement and Concrete Composites, V. 101, 2019, pp. 44-51. doi: 10.1016/j.cemconcomp.2017.06.011

31. Al-Shmaisani, S.; Kalina, R. D.; Rung, M. M.; Ferron, R. P. D.; and Juenger, M. C. G., “Implementation of a Testing Protocol for Approving Alternative Supplementary Cementitious Materials (SCMs): Natural Minerals and Reclaimed and Remediated Fly Ashes,” Report FHWA/TX-18/5-6717-01-1, Federal Highway Administration, Washington, DC, 2018.

32. McCarthy, M. J.; Jones, M. R.; Zheng, L.; Robl, T. L.; and Groppo, J. G., “Characterising Long-Term Wet-Stored Fly Ash Following Carbon and Particle Size Separation,” Fuel, V. 111, 2013, pp. 430-441. doi: 10.1016/j.fuel.2013.02.048

33. Yeheyis, M. B.; Shang, J. Q.; and Yanful, E. K., “Chemical and Mineralogical Transformations of Coal Fly Ash After Landfilling,” World of Coal Ash Conference Proceedings, Lexington, KY, 2009, 13 pp.

34. Aughenbaugh, K. L.; Chancey, R. T.; Stutzman, P.; Juenger, M. C.; and Fowler, D. W., “An Examination of the Reactivity of Fly Ash in Cementitious Pore Solutions,” Materials and Structures, V. 46, No. 5, 2013, pp. 869-880. doi: 10.1617/s11527-012-9939-6

35. Durdziński, P. T.; Snellings, R.; Dunant, C. F.; Haha, M. B.; and Scrivener, K. L., “Fly ash as an Assemblage of Model Ca–Mg–Na-Aluminosilicate Glasses,” Cement and Concrete Research, V. 78B, 2015, pp. 263-272. doi: 10.1016/j.cemconres.2015.08.005

36. Snellings, R., “Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates,” Journal of the American Ceramic Society, V. 96, No. 8, 2013, pp. 2467-2475. doi: 10.1111/jace.12480

37. Snellings, R.; Paulhiac, T.; and Scrivener, K., “The Effect of Mg on Slag Reactivity in Blended Cements,” Waste and Biomass Valorization, V. 5, No. 3, 2014, pp. 369-383. doi: 10.1007/s12649-013-9273-4

38. Külaots, I.; Hsu, A.; Hurt, R. H.; and Suuberg, E. M., “Adsorption of Surfactants on Unburned Carbon in Fly Ash and Development of a Standardized Foam Index Test,” Cement and Concrete Research, V. 33, No. 12, 2003, pp. 2091-2099. doi: 10.1016/S0008-8846(03)00232-1

39. Fan, M., and Brown, R. C., “Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash,” Energy & Fuels, V. 15, No. 6, 2001, pp. 1414-1417. doi: 10.1021/ef0100496

40. Maroto-Valer, M. M.; Taulbee, D. N.; and Hower, J. C., “Characterization of Differing Forms of Unburned Carbon Present in Fly Ash Separated by Density Gradient Centrifugation,” Fuel, V. 80, No. 6, 2001, pp. 795-800. doi: 10.1016/S0016-2361(00)00154-X

41. Yu, J.; Külaots, I.; Sabanegh, N.; Gao, Y.; Hurt, R. H.; Suuberg, E. S.; and Mehta, A., “Adsorptive and Optical Properties of Fly Ash from Coal and Petroleum Coke Co-Firing,” Energy & Fuels, V. 14, No. 3, 2000, pp. 591-596. doi: 10.1021/ef9901950

42. Baltrus, J. P., and LaCount, R. B., “Measurement of Adsorption of Air-Entraining Admixture on Fly ash in Concrete and Cement,” Cement and Concrete Research, V. 31, No. 5, 2001, pp. 819-824. doi: 10.1016/S0008-8846(01)00494-X

43. Gebler, S., “Evaluation of Calcium Formate and Sodium Formate as Accelerating Admixtures for Portland Cement Concrete,” ACI Journal Proceedings, V. 80, No. 5, Sept.-Oct. 1983, pp. 439-444.

44. Gebler, S., and Klieger, P., “Effect of Fly Ash on the Air-Void Stability of Concrete,” Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, Farmington Hills, MI, 1983, pp. 103-142.

45. Harris, N. J.; Hover, K. C.; Folliard, K. J.; and Ley, M. T., “The use of the Foam Index Test to Predict AEA Dosage in Concrete Containing Fly Ash: Part I—Evaluation of the State of Practice,” Journal of ASTM International, V. 5, No. 7, 2008, pp. 1-15. doi: 10.1520/JAI101601

46. Ahmed, Z. T.; Hand, D. W.; Watkins, M. K.; and Sutter, L. L., “Air-Entraining Admixture Partitioning and Adsorption by Fly Ash in Concrete,” Industrial & Engineering Chemistry Research, V. 53, No. 11, 2014, pp. 4239-4246. doi: 10.1021/ie4018594

47. Ahmed, Z. T.; Hand, D. W.; Watkins, M. K.; and Sutter, L. L., “Combined Adsorption Isotherms for Measuring the Adsorption Capacity of Fly Ash in Concrete,” Sustainable Chemistry and Engineering, V. 2, No. 4, 2014, pp. 614-620. doi: 10.1021/sc500043s

48. Chen, Q.; Wang, J.-X.; Yang, F.; Zhou, D.; Bian, N.; Zhang, X.-J.; Yan, C.-G.; and Han, B.-H., “Tetraphenylethylene-Based Fluorescent Porous Organic Polymers: Preparation, Gas Sorption Properties and Photoluminescence Properties,” Journal of Materials Chemistry, V. 21, No. 35, 2011, pp. 13554-13560. doi: 10.1039/c1jm11787d

49. Pihlasalo, S.; Kirjavainen, J.; Hänninen, P.; and Härmä, H., “Ultrasensitive Protein Concentration Measurement Based on Particle Adsorption and Fluorescence Quenching,” Analytical Chemistry, V. 81, No. 12, 2009, pp. 4995-5000. doi: 10.1021/ac9001657

50. Payá, J.; Monzó, J.; Borrachero, M. V.; Perris, E.; and Amahjour, F., “Thermogravimetric Methods for Determining Carbon Content in Fly Ashes,” Cement and Concrete Research, V. 28, No. 5, 1998, pp. 675-686. doi: 10.1016/S0008-8846(98)00030-1

51. Mohebbi, M.; Rajabipour, F.; and Scheetz, B. E., “Evaluation of Two-Atmosphere Thermogravimetric Analysis for Determining the Unburned Carbon Content in Fly Ash,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 258-279. doi: 10.1520/ACEM20160052

52. Watkins, M. K.; Ahmed, Z.; Sutter, L.; and Hand, D., “Characterization of Coal Fly Ash by Absolute Foam Index,” ACI Materials Journal, V. 112, No. 3, May-June 2015, pp. 393-398.

53. Wu, C.-Y.; Yu, H.-F.; and Zhang, H.-F., “Extraction of Aluminum by Pressure Acid-Leaching Method from Coal Fly Ash,” Transactions of Nonferrous Metals Society of China, V. 22, No. 9, 2012, pp. 2282-2288. doi: 10.1016/S1003-6326(11)61461-1

54. Anzalone, G. C.; Diaz-Loya, I.; Minkara, R. Y.; and Sutter, L. L., “Comparison of Methods to Measure Adsorptive Capacity of Coal Fly Ash,” ACI Materials Journal, V. 116, No. 4, July 2019, pp. 107-112. doi: 10.14359/51716715

55. Liu, H.; Houzhang, T.; Qiang, G.; Xuebin, W.; and Tongmo, X., “Microwave Attenuation Characteristics of Unburned Carbon in Fly Ash,” Fuel, V. 89, No. 11, 2010, pp. 3352-3357. doi: 10.1016/j.fuel.2010.02.029

56. Wang, T.; Ishida, T.; and Gu, R., “A Comparison of the Specific Surface Area of Fly Ash Measured by Image Analysis with Conventional Methods,” Construction and Building Materials, V. 190, 2018, pp. 1163-1172. doi: 10.1016/j.conbuildmat.2018.09.131

57. Gang, P.; Dong, M.; Yu, J.; and Lu, J., “Accuracy Improvement of Quantitative Analysis of Unburned Carbon Content in Fly Ash Using Laser Induced Breakdown Spectroscopy,” Spectrochimica Acta. Part B, Atomic Spectroscopy, V. 131, 2017, pp. 26-31. doi: 10.1016/j.sab.2017.03.001

58. Kalina, R. D.; Al-Shmaisani, S.; Ferron, R. D.; and Juenger, M. C. G., “False Positives in ASTM C618 Specifications for Natural Pozzolans,” ACI Materials Journal, V. 116, No. 1, Jan. 2019, pp. 165-172. doi: 10.14359/51712243

59. Bentz, D.; Duran-Herrara, A.; and Galvez-Moreno, D., “Comparison of ASTM C311 Strength Activity Index Testing Versus Testing Based on Constant Volumetric Proportions,” Journal of ASTM International, V. 9, No. 1, 2011, pp. 1-7. doi: 10.1520/JAI104138

60. Dunstan, E. R., Jr., “An Enhanced Procedure to Measure Strength and Durability of Pozzolans,” ACI Materials Journal, V. 116, No. 4, July 2019, pp. 183-192. doi: 10.14359/51716721

61. Dunstan Jr., E. R., “What is a “Practical” (ASTM C618) SAI — Strength Activity Index for Fly Ashes that can be used to Proportion Concretes Containing Fly Ash?” World of Coal Ash Conference Proceedings, Lexington, KY, 2017, 25 pp.

62. Ramanathan, S.; Croly, M.; and Suraneni, P., “Comparison of the Effects that Supplementary Cementitious Materials Replacement Levels have on Cementitious Paste Properties,” Cement and Concrete Composites, V. 112, 2020, p. 103678 doi: 10.1016/j.cemconcomp.2020.103678

63. Pal, S. C.; Mukherjee, A.; and Pathak, S. R., “Investigation of Hydraulic Activity of Ground Granulated Blast Furnace Slag in Concrete,” Cement and Concrete Research, V. 33, No. 9, 2003, pp. 1481-1486. doi: 10.1016/S0008-8846(03)00062-0

64. Avet, F.; Snellings, R.; Diaz, A. A.; Haha, M. B.; and Scrivener, K., “Development of a New Rapid, Relevant and Reliable (R3) Test Method to Evaluate the Pozzolanic Reactivity of Calcined Kaolinitic Clays,” Cement and Concrete Research, V. 85, 2016, pp. 1-11. doi: 10.1016/j.cemconres.2016.02.015

65. Snellings, R., and Scrivener, K. L., “Rapid Screening Tests for Supplementary Cementitious Materials: Past and Future,” Materials and Structures, V. 49, No. 8, 2016, pp. 3265-3279. doi: 10.1617/s11527-015-0718-z

66. Li, X.; Snellings, R.; Antoni, M.; Alderete, N. M.; Ben Haha, M.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; De Weerdt, K.; Dhandapani, Y.; Duchesne, J.; Haufe, J.; Hooton, D.; Juenger, M.; Kamali-Bernard, S.; Kramar, S.; Marroccoli, M.; Joseph, A. M.; Parashar, A.; Patapy, C.; Provis, J. L.; Sabio, S.; Santhanam, M.; Steger, L.; Sui, T.; Telesca, A.; Vollpracht, A.; Vargas, F.; Walkley, B.; Winnefeld, F.; Ye, G.; Zajac, M.; Zhang, S.; and Scrivener, K. L., “Reactivity Tests for Supplementary Cementitious Materials: RILEM TC 267-TRM Phase 1,” Materials and Structures, V. 51, No. 6, 2018, pp. 151-165. doi: 10.1617/s11527-018-1269-x

67. Suraneni, P., and Weiss, W. J., “Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis,” Cement and Concrete Composites, V. 83, 2017, pp. 273-278. doi: 10.1016/j.cemconcomp.2017.07.009

68. Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; and Weiss, W. J., “New Insights from Reactivity Testing of Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 103, 2019, pp. 331-338. doi: 10.1016/j.cemconcomp.2019.05.017

69. Wang, Y., and Suraneni, P., “Experimental Methods to Determine the Feasibility of Steel Slags as Supplementary Cementitious Materials,” Construction and Building Materials, V. 204, 2019, pp. 458-467. doi: 10.1016/j.conbuildmat.2019.01.196

70. Burris, L. E., and Juenger, M. C. G., “The Effect of Acid Treatment on the Reactivity of Natural Zeolites used as Supplementary Cementitious Materials,” Cement and Concrete Research, V. 79, 2016, pp. 185-193. doi: 10.1016/j.cemconres.2015.08.007

71. Wei, X.; Xiao, L.; and Li, Z., “Prediction of Standard Compressive Strength of Cement by the Electrical Resistivity Measurement,” Construction and Building Materials, V. 31, 2012, pp. 341-346. doi: 10.1016/j.conbuildmat.2011.12.111

72. Weiss, W.; Barrett, T.; Qiao, C.; and Todak, H., “Toward a Specification for Transport Properties of Concrete Based on the Formation Factor of a Sealed Specimen,” Advances in Civil Engineering Materials, V. 5, No. 1, 2016, pp. 179-194. doi: 10.1520/ACEM20160004

73. Kabir, H.; Hooton, R. D.; and Popoff, N. J., “Evaluation of Cement Soundness Using ASTM C151 Autoclave Expansion Test,” ACI Materials Journal, 2020, submitted.

74. Helmuth, R., and West, P. B., “Reappraisal of the Autoclave Expansion Test,” Cement, Concrete and Aggregates, V. 20, No. 1, 1998, pp. 194-219. doi: 10.1520/CCA10540J

75. Klemm, W. A., “Cement Soundness and the Autoclave Expansion Test – An Update of the Literature,” Report Vol. 2651, Portland Cement Association, Skokie, IL, 2005.

76. Mielenz, R., “ASTM Specifications on Fly Ash for use in Concrete,” Proceedings Edison Electric Institute-National Coal Association-Bureau of Mines Symposium, Pittsburgh, PA, 1967.

77. Manz, O. E., “Coal Fly Ash: A Retrospective and Future Look,” Fuel, V. 78, No. 2, 1999, pp. 133-136. doi: 10.1016/S0016-2361(98)00148-3

78. Swamy, R. N., “Fly Ash and Slag: Standards and Specifications—Help or Hindrance?” Materials and Structures, V. 26, No. 10, 1993, pp. 600-613. doi: 10.1007/BF02472835

79. Rao, C.; Stehly, R. D.; and Ardani, A., “Proportioning Fly Ash as Cementitious Material in Airfield Pavement Concrete Mixtures,” Report IPRF-01-G-002-06-2, Innovative Pavement Research Foundation, Hiawatha, KS, 2011, 168 pp.

80. Helmuth, R., “Fly Ash in Cement and Concrete,” Report SP040.01T, Portland Cement Association, Skokie, IL, 1991, 203 pp.

81. Kelly, R. P., “Parallels and Non-Conformities in Worldwide Fly Ash Classification: The need for a Robust, Universal Classification System for Fly Ash,” World of Coal Ash Conference Proceedings, Lexington, KY, 2015, 13 pp.

82. Giergiczny, Z., “Fly Ash and Slag,” Cement and Concrete Research, V. 124, 2019, p. 105826 doi: 10.1016/j.cemconres.2019.105826

83. Shvarzman, A.; Kovler, K.; Schamban, I.; Grader, G. S.; and Shter, G. E., “Influence of Chemical and Phase Composition of Mineral Admixtures on their Pozzolanic Reactivity,” Advances in Cement Research, V. 14, No. 1, 2002, pp. 35-41. doi: 10.1680/adcr.2002.14.1.35

84. Obla, K. H.; Hill, R. L.; Thomas, M. D. A.; Shashiprakash, S. G.; and Perebatova, O., “Properties of Concrete Containing Ultra-Fine Fly Ash,” ACI Materials Journal, V. 100, No. 5, Sept.-Oct. 2003, pp. 426-433.

85. Shaikh, F. U. A., and Supit, S. W. M., “Compressive Strength and Durability Properties of High Volume Fly Ash (HVFA) Concretes Containing Ultrafine Fly Ash (UFFA),” Construction and Building Materials, V. 82, 2015, pp. 182-205. doi: 10.1016/j.conbuildmat.2015.02.068

86. Subramaniam, K. V.; Gromotka, R.; Shah, S. P.; Obla, K.; and Hill, R., “Influence of Ultrafine Fly Ash on the Early Age Response and the Shrinkage Cracking Potential of Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 17, No. 1, 2005, pp. 45-53. doi: 10.1061/(ASCE)0899-1561(2005)17:1(45)


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer