• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: SP-324: Composites with Inorganic Matrix for Repair of Concrete and Masonry Structures

Author(s): Gianmarco de Felice, Lesley H. Sneed, and Antonio Nanni

Publication: Symposium Paper

Volume: 324


Appears on pages(s): 200


DOI: 10.14359/51711159

Date: 5/16/2018

This SP is the result of two technical sessions held during the 2017 ACI Spring Convention in Detroit, MI. Via presentations and the resulting collection of papers, it was the intention of the sponsoring committees (ACI Committees 549 and 562 together with Rilem TC 250) to bring to the attention of the technical community the progress being made on a new class of repair/strengthening materials for concrete and masonry structures. These materials are characterized by a cementitious matrix made of hydraulic or lime-based binders, which embeds reinforcement in the form of one or more fabrics also known as textiles. The great variability of fabric architectures (for example, cross sectional area, strand spacing, and fiber impregnation with organic resin) coupled with the types of material used (aramid, basalt, carbon, glass, polyparaphenylene benzobisoxazole (PBO) and coated ultra-high strength steel) makes the characterization, validation, and design of these systems rather challenging. Irrespective of the reinforcement type (synthetic or ultra-high strength steel), the impregnating mortar is applied by trowel or spray-up. It should also be noted that fabric reinforced cementitious matrix and steel reinforced grout, in particular, are very different from other repair technologies such as FRC (fiber reinforced concrete) and UHPC (Ultra High-Performance Concrete) in that they utilize continuous and oriented reinforcement. In a sense FRCM and SRG can be viewed as the modern evolution of ferrocement.