ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Maintenance for Repaired RC Column Exposed to Chloride Attack Based on Probability Distribution of Service Life

Author(s): Sang-Hwa Jung, Hyun-Min Yang, Keun-Hyeok Yang, and Seung-Jun Kwon

Publication: IJCSM

Volume: 12

Issue:

Appears on pages(s):

Keywords: chloride attack, maintenance, probabilistic technique, service life, repairing frequency

DOI: 10.1186/s40069-018-0259-2

Date: 2/28/2018

Abstract:
Chloride attack is one of the most critical deterioration due to rapid corrosion initiation and propagation which can cause structural safety problem. Extended service life through repairing is very important for determination of maintenance strategy. Conventionally adopted models for estimation of life cycle cost have shown step-shaped elevation of cost, however the extension of service life is much affected by quality of construction and repairing materials, which means engineering uncertainties in residual service life. In the paper, reinforced concrete column with three different mix proportions exposed to chloride attack are considered, and repairing numbers with related costs are evaluated through probabilistic technique for maintenance. With a given exposure condition, service lives with normal probabilistic distribution are considered, and the effect of design parameters such as coefficient of variation of service life and 1st repairing timing are investigated. The comparison of results from conventional approach (step-function) and probabilistic approach are performed. When calculating repair frequency for intended service life through probabilistic model, the required repair frequency is evaluated to be 6.71 times for OPC, 4.09 times for SG30, and 2.95 times for SG50, respectively. The probabilistic model for repairing cost is evaluated to be effective for reducing the repair frequency reasonably with changing the intended service life and design parameters.