Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

Author(s): Hamdy K. Shehab, Ahmed S. Eisa, Kareem A. El-Awady

Publication: IJCSM

Volume: 11

Issue: 2

Appears on pages(s): 327–341

Keywords: cutouts, flat slab, reinforced concrete, strengthening, CFRP, bonding, line loads, numerical analysis.

Date: 6/30/2017

Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

IJCSM, International Partner Access.

View Resource »