SDOF and HYDROCODE Simulation of Blast-Loaded Reinforced Concrete Slabs


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: SDOF and HYDROCODE Simulation of Blast-Loaded Reinforced Concrete Slabs

Author(s): Tarek H Kewaisy

Publication: Special Publication

Volume: 306


Appears on pages(s): 7.1-7.20

Keywords: Blast, Reinforced Concrete, Simulation, HYDROCODE, SDOF, LS-DYNA, Response, Prediction, Damage

Date: 3/1/2016

Simulation of structural behavior of Reinforced Concrete (RC) subjected to shock loading is an important aspect of blast-resistant design of military and civilian structures. Depending on the application, different analytical approaches of varying complexities can be used to predict the nonlinear response of various concrete elements to blast loads. This paper reports the findings of a comprehensive study submitted for a Blast Blind Prediction Contest that involved various simulations of blast-loaded concrete slabs. The NSF in collaboration with ACI-447 and ACI-370 committees, Structure-Point and UMKC/ SCE sponsored the contest that included four categories requiring the use of Single Degree Of Freedom (SDOF) and physics-based (HYDROCODE) simulation techniques to predict the responses of one-way reinforced concrete slabs to two levels of blast loading. The study investigated the varying blast response characteristics associated with the use of two classes of concrete, Normal and High Strength and two classes of reinforcement, Normal and High Strength Vanadium. A testing program that encompasses all contest categories was completed at the Blast Loading Simulator (BLS) at the ERDC/ USACE, Vicksburg, MS to collect relevant shock loading and structural response data for various testing configurations. Various SDOF tools (i.e. P-I curves, UFC-3-340-02 charts, RCBlast, and RCProp/ SBEDS) and HYDROCODE constitutive models (LS-DYNA MAT-159, MAT-085, and MAT-072R3) were utilized to simulate various test setup information in order to predict maximum and residual responses and cracking patterns of tested RC slabs. Despite their major differences in modeling capabilities, analytical efforts, and inherent accuracy, all utilized simulation techniques were successful in predicting blast responses of investigated RC slabs with sufficient practical accuracy. Acknowledging their modeling limitations, SDOF simulations exhibited excellent capabilities in predicting overall behavior and maximum responses with a level of accuracy that is well suited for design applications. On the other hand, HYDROCODE simulations proved superior in their response and damage predictions owing to their modeling capabilities that allowed realistic end conditions, material nonlinearities, and strain-rate effects.