In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Chat with Us Online Now
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Analysis Of A Jointless Floor With Calcium Sulpho-Aluminate And Portland Cement
Author(s): Adriano Reggia; Sergio Tortelli; Maurizio Marchi; Massimo Borsa and Giovanni A. Plizzari
Publication: Special Publication
Volume: 305
Issue:
Appears on pages(s): 45.1-45.10
Keywords: calcium sulpho-aluminate cement; curling; expansion; finite element analysis; friction; jointless concrete floor; restrained shrinkage; shrinkage-compensating concrete; shrinkage cracking
Date: 9/1/2015
Abstract:Concrete floor on ground represents an important application for concrete use in Italy. Despite their widespread use, a large percentage of concrete floors does not meet the performance requirements in terms of functionality and durability for various reasons; among them, restrained shrinkage cracking and curling represent one of the most important causes of defects. Cracking is mainly due to the drying shrinkage in presence of internal and external restraints, while curling is due to the shrinkage gradient due to the floor thickness. An analytical approach to shrinkage cracking and curling is often overlooked by designers in lieu of the design of contraction joints that allow the cracking of concrete under controlled conditions. Nowadays, the growing needs of concrete floors purchasers in terms of durability and functionality suggests the use of special concretes for flooring. For instance, the use of shrinkage-compensating concretes reduces the number of contraction joints and enhances the concrete slab performances. This study presents the non-linear finite element analysis of a jointless floor made with a shrinkage-compensating concrete obtained with the use of a blend of calcium sulpho-aluminate cement and ordinary Portland cement.
Click here to become an online Journal subscriber