Effect Of Waste Fibers On The Mechanical Properties Of Concrete


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Effect Of Waste Fibers On The Mechanical Properties Of Concrete

Author(s): Deniz Hamzacebi and Ozkan Sengul

Publication: Special Publication

Volume: 305


Appears on pages(s): 38.1-38.10

Keywords: fracture energy, mechanical properties; steel fiber reinforced concrete; waste fibers; waste tires

Date: 9/1/2015

The main objective this study was to investigate the effect of waste steel fibers on the mechanical properties of concrete. The steel fibers obtained from waste tires were used, and physical and mechanical properties of these fibers were determined as a first step of the study. Fibers having different aspect ratios were used in concretes at various amounts. A concrete without any fibers was also cast. Compressive, flexural and splitting tensile strengths of the concretes were obtained. Fracture energies were also obtained using a closed-loop testing machine. Results showed that post-cracking strength and toughness of the concretes containing waste steel fibers were significantly increased. Flexural and splitting strength of the concretes were also improved. The experimental results showed that the waste steel fibers recovered from waste tires could be used for the production of steel fiber reinforced concretes. Utilization of waste steel fibers can help to protect environment by reducing the need for steel fiber production. Thus, the reuse of waste fibers in concrete contributes to a more sustainable fiber reinforced concrete production. Since the costs of the waste steel fibers are substantially lower than the commercial steel fibers, more economical steel fiber reinforced concretes can also be obtained.