Powder Additions to Mitigate Retardation in High-Volume Fly Ash Mixtures


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Powder Additions to Mitigate Retardation in High-Volume Fly Ash Mixtures

Author(s): Dale P. Bentz

Publication: Materials Journal

Volume: 107

Issue: 5

Appears on pages(s): 508-514

Keywords: building technology; high-volume fly ash; hydration; isothermal calorimetry; retardation; sustainability

Date: 9/1/2010

While high-volume fly ash (HVFA) concrete mixtures are attractive from a sustainability viewpoint, they are sometimes plagued by long delays in finishing, producing a performance that is unacceptable to contractors. In this paper, isothermal calorimetry studies are conducted to examine excessive retardation in HVFA mixtures based on both Class C and Class F fly ash. In addition to quantifying the retardation, the calorimetric curves are also used to evaluate the performance of mitigation strategies based on various powder additions. Powder additions examined in the present study include an aluminum trihydroxide, calcium hydroxide, cement kiln dust, condensed silica fume, limestone, and a rapid-set cement. The addition of either 5% calcium hydroxide or 10% of the rapid-set cement by mass of total solids (powders) is observed to provide a significant reduction in the retardation measured in mixtures based on either class of fly ash for the material combinations examined in this study. Thus, these two powder additions may provide viable solutions to mitigating excessive retardation, extending the use of HVFA mixtures in practice.