In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Scale Model for the Evaluation of a Continuous Prestressed Flat-Slab Bridge System
Author(s): R. A. Cook and F. E. Fagundo
Publication: Special Publication
Volume: 143
Issue:
Appears on pages(s): 81-96
Keywords: bridges (structures); concretes; cracking (fracturing); deflection; flat concrete slabs; load tests (structural); models; moment-curvature relationship; post-tensioning; prestressed concrete; segmental construction; spans; tests; Design
Date: 5/1/1994
Abstract:A new type of short-span bridge system has been developed and implemented over the Albermarle Sound south of Edenton, North Carolina. The new system incorporates precast flat-slab sections that are post-tensioned for continuity. The new system has the potential to replace traditional trestle-type bridges constructed using simple-span prestressed beams with a cast-in-place deck. A continuous two-span, half-scale model of the bridge system was built and tested under various load conditions. The bridge was evaluated analytically and experimentally for the transfer load case (dead load plus prestress), the maximum negative moment service load case, cracking load, and ultimate load. The model bridge performed as expected for all cases. Comparisons between analytical and physical models showed good correlation for all types of tests. At service load levels, the bridge exhibited a linear elastic response with no evidence of cracking. The ultimate load and deflections of the new bridge system were readily predicted by standard behavioral models for prestressed concrete.
Click here to become an online Journal subscriber