High-Performance Australian Concretes for Marine Applications


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: High-Performance Australian Concretes for Marine Applications

Author(s): D. Baweja, V. Sirivivatnanon, W. Gross, and G. Laurie

Publication: Special Publication

Volume: 149


Appears on pages(s): 363-378

Keywords: blast furnace slag; blended cements; chlorides; corrosion; diffusion; durability; fly ash; high-performance concretes; marine atmospheres; penetration tests; resistivity; silica fume; Materials Research

Date: 10/1/1994

A significant proportion of Australian infrastructure is located in a zone that is close to or in direct contact with seawater. At most of these locations, the coastal environment is coupled with high ambient temperatures and large diurnal temperature ranges, conditions that are conducive to promoting corrosion of steel reinforcement in concrete structural elements. Users of concrete are thus always looking for ways to maximize concrete performance for long-term use under these aggressive conditions. The options available in terms of binder systems for concretes in a marine environment have increased in recent years. There are currently available a range of cements and blended cements that include fly ash, slag, and silica fume, which have a place in specifications for marine concrete applications. To provide technical data for potential specifiers and users of such concrete types, a collaborative CSIRO-CSR research and development project was initiated to consider the performance of a range of concretes for marine environments. Concretes considered had a water-binder ratio of 0.35 and included both portland and blended cements. Paper reviews current standards on specifications of concrete for marine environments and goes on to present some recently produced Australian data for different concretes reflecting potential performance. Techniques considered include chloride-ion penetration of concrete based on charge transfer measurements, chloride-ion penetration through concrete, and some mechanical properties of concrete. Conclusions are drawn as to the suitability of certain concrete types under marine conditions.