In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Biaxial Compression Datigue and the Discontinuity of Concrete
Author(s): Eric C. M. Su and Thomas T. C. Hsu
Publication: Materials Journal
Volume: 85
Issue: 3
Appears on pages(s): 178-188
Keywords: biaxial loads; compression; compressive strength; concretes;cyclic loads; fatigue (materials); fatigue strength; fatigue tests; strength; stresses; General
Date: 5/1/1988
Abstract:A biaxial compression fatigue machine was built to test plain concrete plates of 6 x 6 x 1.5 in. (15.2 x 15.2 x 3.8 cm). Brush-type loading platens were used to eliminate the end friction. The test program covered four principal biaxial-compression stress ratios and a range of load cycles from 1 to 2,000,000. Within this range of cycles the S-N (fatigue stress versus number of cycles) curve was found not to be a straight line as commonly assumed. This S-N curve can be closely represented by a modified Richard and Abbott's expression. The observed S-N curves of concrete can each be idealized by two straight lines that have significantly different slopes. The slope for low-cycle fatigue is several times greater than that for high-cycle fatigue. These two straight lines form a distinctive kink at the intersection. This point of intersection represents the discontinuity stress and can be used as its definition. Compared to the authors' tests, the S-N curves obtained in the literature are found to be not conservative because of the end friction exerted by the solid loading platens on the test specimens. The fatigue strength of concrete under biaxial compression is greater than that under uniaxial compression for any given number of load cycles. Observation of failure modes and the measurements of deformations also indicate that concrete possesses similar failure patterns under static and fatigue loadings.
Click here to become an online Journal subscriber