ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Frost Resistance of High-Strength Concrete

Author(s): Tor Arne Hammer and Erik J. Sellevoid

Publication: Symposium Paper

Volume: 121

Issue:

Appears on pages(s): 457-488

Keywords: air entrainment; curing; freeze-thaw durability; strength; high-strength concretes; silica fume; tests; Materials Research

DOI: 10.14359/2561

Date: 11/1/1990

Abstract:
Two test methods were used to investigate the frost resistance of high-strength concrete with and without air-entraining agents: a volume deterioration method (ASTM C 666) and a salt-scaling method (SwedishStandard SS137244) similar to ASTM C 672. In addition, low-temperature calorimetry was used to measure ice formation in concretes after a drying/resaturation treatment. For concretes with 0 and 10 percent silica fume contents and water-binder ratios from 0.40 to 0.25, the calorimetry results showed only very minor ice formation down to 20 C. The cement used was a high-strength type (Norwegian P30 4A). This result contrasts an earlier calorimeter result with ordinary portland cement, and indicates that the P30 4A cement produces a more finely divided capillary pore structure. The salt-scaling tests showed that the high-strength concrete with water-to-binder ratios less than about 0.37 exhibits acceptable resistance to salt-scaling, even without air entrainment. The ASTM C 666 test results showed relatively severe damage to concretes with water-to-binder ratios down to 0.28. No air-entrained concrete was tested with ASTM C 666. This result is in apparent conflict with the calorimetry results and suggests that the damage may be related not to ice formation but to thermal fatigue effects caused by differences that are too large between the thermal expansion coefficients of aggregates and binders.