In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
American Concrete Institute 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA
Phone: 1.248.848.3700 Fax: 1.248.848.3701 Staff Directory
Email Support
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Title: Heat Curing of Concrete With and Without Condensed Silica Fume--Effect of Early Temperature History on Compressive Strength
Author(s): P. H. Laamanen, K. Johansen, B. P. Kyltveit, and E. J. Sellevold
Publication: Special Publication
Volume: 132
Issue:
Appears on pages(s): 1045-1060
Keywords: admixtures; aggregates; compressive strength; silica fume; curing; temperature; Materials Research
Date: 5/1/1992
Abstract:It is well known that curing concrete at elevated temperatures reduces the final compressive strength. The reduction depends on the temperature regime as well as the concrete composition. This program was based on recent data indicating that concrete containing condensed silica fume suffers less strength loss if a strength of about 10 MPa is reached at 20 C before heating. In this investigation, concrete characteristics were w/c + s = 0.30, 0.45, and 0.60 with and without 8 percent condensed silica fume. The temperature regime was to transfer specimens at 40 and 60 C, after delay times at 20 C. The delay times corresponded to strengths of about, 0, 3, 6, 9, 12, and 16 MPa. After 6 days, all specimens were cooled to 20 C and tested at 28d. The results show that the delay period had no significant influence on the final strength, except for the specimens with zero delay. The rest suffered some strength reduction compared to 20 C references, about 15 percent for w/c + s = 0.60, and less than 10 percent for the others. The reductions at 60 C were slightly greater than at 40 C. Concretes containing condensed silica fume generally suffered the smallest strength reductions.
Click here to become an online Journal subscriber