Shear Characteristics of Self-Consolidating Concrete for Precast Prestressed Concrete Members

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Shear Characteristics of Self-Consolidating Concrete for Precast Prestressed Concrete Members

Author(s): Y.H. Kim, D. Trejo, and M.D. Hueste

Publication: Special Publication

Volume: 247

Issue:

Appears on pages(s): 53-66

Keywords: aggregate interlock; self-consolidating concrete; shear design; volume of aggregate

Date: 9/1/2007

Abstract:
To achieve adequate flow and stability characteristics, self-consolidating concrete (SCC) typically has higher paste and lower coarse aggregate volumes than conventional concrete (CC). Because the coarse aggregate content directly affects aggregate interlock, SCC may not provide the same shear capacity as CC. This research investigated the influence of SCC aggregate and paste volumes on shear capacity and compared these results with those obtained from similar CC samples. Twelve SCC mixture proportions were evaluated with three main variables: two 16-hour release strengths (5 and 7 ksi), two aggregate types (river gravel and limestone), and three different volumes of coarse aggregate. Four CC mixture proportions were used as control mixtures and consisted of two release strengths (5 and 7 ksi) and two coarse aggregate types (river gravel and limestone). A total of 48 push-off samples (36 SCC and 12 CC samples) were fabricated and assessed for shear characteristics. The crack slip, crack width, normal stress, and shear stress were measured to evaluate the aggregate interlock of the SCC and CC. The relationships between these parameters are presented to illustrate the aggregate interlock behavior for samples containing SCC and CC. Energy absorption methods were used to quantitatively assess the aggregate interlock. These results indicate that the SCC samples tested in this research program exhibit less aggregate interlock than the CC samples.