Physical Properties of High-Strength Concrete in Large-Size Columns and Walls Temperature Rise and Strength Development

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Physical Properties of High-Strength Concrete in Large-Size Columns and Walls Temperature Rise and Strength Development

Author(s): H. Sugiyama

Publication: Special Publication

Volume: 235

Issue:

Appears on pages(s): 305-322

Keywords: cement hydration; cross section of concrete member; high-strength concrete; high-temperature curing; microstructure formation; strength development; temperature rise

Date: 3/22/2006

Abstract:
The interior of a large-size concrete member is heated by internal storage of the heat of cement hydration in early ages. The temperature rise that occurs in the interior of a large-size concrete member affects its strength development. Moreover, the use of high-strength concrete causes higher temperature rises due to the large volume of cement incorporated in the concrete. This paper describes a study on the temperature rise and the long-term strength development of high-strength concrete in large-size concrete members with different shapes and cross sections, especially columns and walls. In addition, we attempt to elucidate the effect of high-temperature curing in early ages on the hydration of cement and the microstructure formation of hydrated cement paste. The greater the cross section of a concrete member, the smaller the compressive strength of a concrete member at 28 and 365 days. This tendency is caused by the fact that the curing temperature of a concrete member rises with increasing cross section. There was a good correlation between the maximum temperature and compressive strength of concrete. The compressive strength of concrete at 28 and 365 days decreased with increasing maximum temperature. High-temperature curing in early ages resulted in the formation of a porous microstructure in later ages. This is why high-temperature curing that occurs in the interior of a thick concrete member inhibits later strength development.