Mechanical, Thermal, and Acoustical Properties of Concrete Containing Vegetable Particles


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Mechanical, Thermal, and Acoustical Properties of Concrete Containing Vegetable Particles

Author(s): L. Arnaud and V. Cerezo

Publication: Special Publication

Volume: 209


Appears on pages(s): 151-168

Keywords: binder; physicaI properties; shives; vegetable particles

Date: 9/26/2002

This paper deals with the measurement of physical properties (mechanical, thermal, acoustical) of various formulations of concrete containing vegetable particles. Such material is mde up with hemp shives mixed with lime binders. Shives are very porous and so liglitweight. Thus, this concrete presents a high porosity related to the microscopic porosity of the shives and the macroscopic porosity due to the arrangement of particles. Moreover, this material presents a ductile behavior and can bears high strain without been destroyed. Depending on the binder proportion, the mechanical properties of vegetable concrete cover a wide range: maximum stress in between 0.4 and 1.2 MPa, Young madulus in between 20 and 90 MPa, strain at maximum stress in between 4 and 10%. The thermal conductivity ranges from 0.06 to 0.11 W.m-1.K-1, sound absorption between 0.5 and 1. The final aim of this study is to optimize the formulation of vegetable concrete according to its use (wall, floor, roof. . .). A theoretical model made with self-consistent method allows to calculate precisely the coefficient of conductivity l as a function of the mixture proportion and the compactness level. A comparison with experimental measurements shows a good accuracy of the results.